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ABSTRACT 
 

High-dimensional modeling is becoming ubiquitous in science and engineering due to advances in sensor 

technology and storage technology. The current NSF promotion of "computational thinking" is timely: we need to 

focus an international effort to oversee the transition from matrix-based to tensor-based computing Considerations. 

The tools for successful problem solving provided by the numerical linear algebra community need to be expanded 

and generalized. However, tensor-based research is not the only one Matrix-based research with additional 

subscripts. Tensors are data objects in their own right, and there is much to learn about their geometry and their 

connections to statistics and operator theory. NSF can help ensure the vitality of "Big N" engineering and science 

by systematically supporting research in tensor-based computation and modeling. 

 

Keyword: - High-dimensional, NSF, matrix-based, tensor-based etc. 

 
1. INTRODUCTION 

A tensor is a component of the tensor product of a vector space. Up to the choice of base, it can be represented as a 

multidimensional array of numerical values on which algebraic operations generalizing matrix operations can be 

performed. In this representation, the entries in a k-th order tensor are identified by a k-tuple of subscripts, e.g., 

A(i1, i2, i3, i4). A matrix is a second-order tensor. A vector is a first-order tensor. A scalar is a tensor of order zero. 

The discretization of a continuous multivariate function on a grid yields a tensor, e.g., A(i, j, k,l ) might house the 

value of f(w, x, y, z) at (w, x, y, z)=(wi, xj , yk, zl). In other settings, a tensor might capture an n-way interaction, 

e.g., A(i, j, k, l) is a value that captures an interaction between four variables/factors.  

 

Tensors have existed since the mid-1800s and play an important role in physics, engineering, and mathematics, with 

varying levels of abstraction. For example, Einstein's entire theory of relativity was written in tensor form. Our use 

of this term will be specific and concrete: a tensor is the n-way of real (or complex) numbers. Handling such objects 

involves polylinear algebra. For an abstract, non-numerical treatment of that topic, see Greub [1]. 

 

1.1 Tensor-Based Computation Is Not New  

Over the last four decades the fields of chemometrics and psychometrics have developed the infrastructure for 

tensor-based computation, see Tucker [2]. It is essential to understand this research and its intersection with 

numerical linear algebra. The multiway analysis texts by Smilde, Bro, and Geladi [3] and the survey article by Kolda 

and Bader [4] with their many references are excellent for this purpose. See also the expository papers of Bro [5] 

and Bro [6]. A separate literature dealing with tensor calculations has developed in the quantum chemistry and 

electronic structures communities. See White et al [7], Head-Gordon et al [8], Hirata [9], and Chan etal [10]. Each of 

these research’s threads brings something unique to the table. Different camps should be intermingled so as not to 

reinvent the wheel. 
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1.2 Increasingly about big data and high dimensionality 

In his acceptance speech for the Innovations Award at KDD 2007, U. Fayyad noted that Yahoo! Inc. The data 

retrieved by a crawl covering billions of web pages is approximately five petabytes. Another "big data" framework 

arises in the analysis of large social networks, where there are millions of nodes with billions of conversations. See 

Leskovec and Horvitz [11]. Collecting and storing large datasets of commodity, sensor data, social network data, 

fMRI medical data with terabyte disks is easier than ever. This data explosion creates profound research challenges 

that require scalable, tensor-based algorithms. 

 

The “volume” of a tensor is the product of the component dimensions n1, n2,..., nd and therein lies the curse of 

dimensionality. In many applications N = n1, n2,..., nd is big primarily because d is big. And d is getting bigger 

because researchers are interested in developing more 2 sophisticated models that capture multiple interactions 

instead of idealized, overly-simplistic pairwise interactions. 

 

The development of tensor-based methods in the numerical optimization community illustrates this point. Research 

in this area began with tensor methods for nonlinear equations. where the Newton iteration is extended to a low-rank 

approximation for the next term. In the Taylor series after the Jacobian. The technique was then extended to an 

optimization strategy by incorporating low-rank approximations beyond third- and fourth-order tensors Hessian 

matrix.  

 

A comparative attempt has been made to "use more" terms in power series expansions for multivariate functions 

f(x1, x2,...,xn) in statistical settings. Truncated versions of the expansion provide a framework for modeling and 

computation. Generally, higher-order cumulants in the expansion are neglected, e.g., the 3rd cumulant skewness and 

the 4th cumulant kurtosis are both tensors. These tensors describe the higher-order dependence of random variables 

and can be used to estimate higher-order portfolio statistics in financial modeling situations. Just as principal 

components analysis (PCA) identifies factors that account for variance in covariance, principal cumulant 

components analysis (PCCA) identifies factors that simultaneously account for variance in all higher-order 

cumulants. See Morton and Lim [12]. It can be argued that the current financial crisis is partly due to the adoption of 

crude, tensorless, risk estimates. 

 

1.3 Matrix to Tensor: A Complex Extrapolation 

A tensor can be thought of as a higher-order matrix. Conversely, a matrix with a nested block structure can be 

referred to as a tensor. For example, A(1 : n1, 1 : n2, ..., 1 : n6) is an n1-by-n2 block matrix whose entries are n3-by-

n4 block matrices whose entries are n5-by-n6 matrices of real numbers. Given these point-of-view alternatives, 3 the 

revolution of tensor-based scientific computing has ushered in a new chapter in the field of matrix calculus, not 

surprisingly, as the field seems to have "raised" its level of thinking. About every twenty years: 

 
Linear algebra is a unique way to extend computational thinking from the particular to the general. The numerical 

PDE community led to the development of the first sparse matrix solvers in the 1950s and 1960s, a technology that 

now permeates science and engineering. Similar application-driven, coming-of-age stories apply to orthogonal 

matrix computing (statistics, 1970s), structured matrix computing (control engineering, 1980s), parallel matrix 

computing (real-time signal processing, 1980s), and, most recently, model-based Matrix Computation (Information 

Science, 2000). Tensor-based methods are under development in many application areas. It is important to identify 

these areas and the common ground between them from an algorithmic, analytical and software perspective. 
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2. CHALLENGING ALGORITHMS 

2.1 Coping with the Curse of Dimensionality  

There are many an approach to the curse of dimensionality involved in the manipulation of higher-order tensors. 

Approximation and Separability are very important. By representing functions of several variables as sums of 

divided functions, one gets a way to bypass the curse of dimensionality. Research in this direction should torque 

software development. To have multiple users of the same software on different applications, we need adaptive 

algorithms that guarantee accuracy and map well to some "standard" data structure. This, in turn, requires a 

systematic way of approximating and representing operators, particularly in mathematical physics. Tensor networks 

are another vehicle for representing massive vectors that arise in context Solving Hamiltonian eigenvalue problems 

in quantum chemistry. A tensor network is a way to represent a very high-order tensor by connecting many low-

order tensors through contraction. 

 

2.2 Numerical Linear Algebra Framework 

In the field of matrix calculus Current threads of research include (a) the discovery of new computable matrix 

decompositions that expand the set of solvable problems, (b) the exploitation of special structures such as 

eccentricity and symmetry, and (c) the careful framing of numerical rank and conditioning problems by singular 

value decompositions. A generalization of these correlated occupations is evident at the tensor level. However, the 

polynomial complexity makes it clear that you can only run so far with 10 classical numerical linear algebra 

paradigms. For matrices, it is clear what a particular decomposition reveals. This is not always true for tensors. For 

matrices, our interest in data-sparse representations increases with n. For tensors, they are more likely to increase 

with order d and require very different strategies. For a matrix, the concept of rank is obvious for tensors it is fuzzy 

and ambiguous. 

 

2.3 Decomposition Paradigm 

The classical PARAFAC/CANDECOMP and Tucker tensor decompositions are discussed in Kolda and Bader 

(2009) together with several variants and also Comon (2001). Choosing the "right" decomposition depends on the 

underlying application. For example, three-way DEDICOM (decomposition into directional components) is an 

algebraic model similar to multidimensional scaling for the analysis of asymmetric 3-way arrays. PARAFAC2 is a 

modification of the popular PARAFAC (parallel component) model that is less restrictive and allows different 

objects in a single mode. Rather than finding a single magic decomposition, applying a range of decompositions to a 

given problem and drawing conclusions from the union of the insights they each provide can make "data analysis 

sense." In the meantime, tensor-level generalizations of the QR factorization and various eigenvalue decompositions 

have been explored. 

 

2.4 Tensor Rank 

In Kolda (2003), de Silva and Lim (2008), and Friedland (2008), Tensor rank is a much more difficult problem than 

matrix rank. This complicates the problem of computing the distance of a specified set of rank-deficient tensors for a 

given tensor. For example, a random 2-by-2-by-2 tensor has rank three with probability 0.79 and rank two with 

probability 0.21. Such a division between full rank and low rank does not occur with matriculation. For tensors the 

rank-related proximity question becomes ambiguous. In Ding Huang, and Luo (2008), The well-known Eckart-

Young theorem can be used to express the approximation error of a matrix by their SVD. Although the exact errors 

cannot be expressed using the singular values of the modified/fold matrix of tensors, error bounds for tensor 

decompositions. 

 

2.5 Nonnegativity  

In Chicocki, Zdunek, Choi, Plemmons, Amari (2007), non-negative tensor decompositions are useful in a variety of 

applications ranging from document analysis to image processing to bioinformatics. They can be used for spectral 

unmixing for material identification with hyperspectral data and for analyzing large-scale global multivariate climate 

datasets. In See Kim, Sra, and Dhillon (2008), Improved Newton-type algorithms for the problem are currently 

being developed that overcome many computational deficiencies of existing methods. 
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3. CONCLUSIONS  

In many respects, the "tensor" grand challenge is to solve grand challenge problems faced by data-laden researchers 

in other fields. Given current levels of support for information technology, biotechnology, climate modeling and 

other critical areas requiring sophisticated modeling and analysis of large, multidimensional datasets, funding 

initiatives for tensor-related research should be prioritized. By using tensors to describe mathematical objects in 

higher dimensions, it is clear that the development of computational polynomial algebra should parallel the 

development of analytical tools for higher dimensional spaces. In fact, this distinction is artificial because nonlinear 

approximation is the major tool that underlies both areas of research. In a very practical sense, polylinear algebra 

and proper approximation theory are crucial to the progress of mathematics where the curse of dimensionality is a 

major obstacle. The workshop highlighted the breadth of these problem areas, although there was sufficient time to 

focus on a subset of pertinent issues 
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