
Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8115 www.ijariie.com 3692

 SELF DRIVEN CAR

1 Mrudula Oruganti, 2 Abhishek G, 3 Kaushik Kannan, 4 Shwetik Thakur, 5 Prahitya Mahavir

1 Mrudula Oruganti Guide, Computer Science & Engineering, SRM University Chennai,India

2 Abhishek G Student, Computer Science & Engineering, SRM University Chennai, India

3 Kaushik Kannan Student, Computer Science & Engineering, SRM University Chennai, India 4

Shwetik Thakur Student, Computer Science & Engineering, SRM University Chennai, India

5 Prahitya Mahavir Student, Computer Science & Engineering, SRM University Chennai, India

ABSTRACT

An adversarial network is a deep learning framework that makes use of multiple deep learning network

as “adversaries” critiquing the results generated to maximize the probability of generative results.

This can be employed in training a Self Driving Car. This cannot be embedded in a self driving car

until fully trained in a simulated environment. The self driving car and it’s sensors are to be operated

in a virtual environment. The model is so trained that an actor critic model M trains to manoeuvre the

vehicle with a reward based system. A discriminator network uses it’s pre-trained models to critique

the efficiency of the self driving car. The car is set in obstacle courses which it is to avoid. The

unsupervised learning process if critiqued using a discriminator like a mentor to the network, until the

self driving car learns to avoid all obstacles. Further the camera sensors of the car using YOLO(You

only look once algorithm) to detect objects and noise based transformations are applied to understand

the the range of objects to avoid and signs to read. Convolution neural networks are used for the

YOLO algorithm to actively distinguish objects to avoid, road unevenness to reduce speeds, speed

breakers to tackle and unpredictable human behaviour to account for

Keyword.:- adversarial, probability, Self Driving Car, sensors, manoeuvre, obstacle, YOLO,

Convolution neural networks

1 EXISTING MODULE

While Deep Neural Networks (DNNs) have established the fundamentals of DNN-based

autonomous driving systems, they may exhibit erroneous behaviors and cause fatal accidents. To

resolve the safety issues of autonomous driving systems, a recent set of testing techniques have been

designed to automatically generate test cases, e.g., new input images transformed from the original

ones. Unfortunately, many such generated input images often render inferior authenticity, lacking

accurate semantic information of the driving scenes and hence compromising the resulting efficacy and

reliability. In this paper, we propose Deep CNN, an unsupervised framework to automatically generate

large amounts of accurate driving scenes to test the consistency of DNN-based autonomous driving

systems across different scenes.

In particular, Deep CNN delivers driving scenes with various weather conditions (including those

with rather extreme conditions) by applying the Generative

Adversarial Networks (GANs) along with the corresponding real-world weather scenes. Moreover, we

have implemented Deep CNN to test three well-recognized DNN-based autonomous driving systems.

Experimental results demonstrate that Deep CNN can detect thousands of behavioral inconsistencies

for these systems.

Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8115 www.ijariie.com 3693

Based on our assumption, an autonomous driving system is consistent if its steering angle

prediction does not change after modifying the weather condition of driving images. However, this

assumption is too strong to be practical since minor steering angle change incurred by the scene change

may still fall into the safe zone. Hence, similar with prior work [28], we relax the assumption and

accept the prediction if the difference between the predicted steering angles of original and transformed

images can be within an error bound.

2. PROPOSED MODEL

We propose a conceptually simple and lightweight framework for deep reinforcement learning

that uses asynchronous gradient descent for optimization of deep neural network controllers. We

present asynchronous variants of four standard reinforcement learning algorithms and show that

parallel actor-learners have a stabilizing effect on training allowing all four methods to successfully

train neural network controllers. The best performing method, an asynchronous variant of actor-critic,

surpasses the current state-of-the-art on the Atari domain while training for half the time on a single

multi-core CPU instead of a GPU. Furthermore, we show that asynchronous actor-critic succeeds on a

wide variety of continuous motor control problems as well as on a new task of navigating random 3D

mazes using a visual input.

2.1 Systematic Testing with Neuron Coverage

The input-output space (i.e., all possible combinations of inputs and outputs) of a complex system

like an autonomous vehicle is too large for exhaustive exploration. Therefore, we must devise a

systematic way of partitioning the space into different equivalence classes and try to cover all

equivalence classes by picking one sample from each of them. In this project, we leverage neuron

coverage as a mechanism for partitioning the input space based on the assumption that all inputs that

have similar neuron coverage are part of the same equivalence class (i.e., the target DNN behaves

similarly for these inputs). Neuron coverage was originally proposed by Peietal. for guided differential

testing of multiple similar DNNs . It is defined as the ratio of unique neurons that get activated for

given input(s) and the total number of neurons in a DNN:

Neuron Cover are = |Activated Neurons| /|Total Neurons|

An individual neuron is considered activated if the neuron’s output (scaled by the overall layer’s

outputs) is larger than a DNN-wide threshold. In this paper, we use 0.2 as the neuron activation

threshold for all our experiments. Similar to the code-coverage-guided testing tools for traditional

software, DeepTest tries to generate inputs that maximize neuron coverage of the test DNN.

For all neurons in fully-connected layers, we can directly compare their outputs against the neuron

activation threshold as these neurons output a single scalar value. By contrast, neurons in convolutional

layers output multidimensional feature maps as each neuron outputs the result of applying a

convolutional kernel across the input space . In such cases, we compute the average of the output

feature map to convert the multidimensional output of a neuron into a scalar and compare it to the

neuron activation threshold.

2.2 Transfer Learning

For this model, we used the idea of transfer learning. Transfer learning is a way of using high

quality models that were trained on existing large datasets. The idea of transfer learning is that features

learned in the lower layers of the model are likely transferable to another dataset. These lower level

features would be useful in the new dataset such as edges. Of the pre-trained models available,

ResNet50 had good performance for this dataset. This model was trained on ImageNet. The weights of

the first 15 ResNet blocks were blocked from updating (first 45 individual layers out of 175 total). The

output of ResNet50 was connected to a stack of fully connected layers containing 512, 256, 64, and 1

different units respectively. The architecture of this model can be seen with the overall number of

param.eters being 24,784,641. The fully connected layers used ReLUs as their activation. The

ResNet50 model consists of several different repeating blocks that form residual connections. The

number filters varies from 64 to 512. A block is consistent of a convolutional layer, batch

Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8115 www.ijariie.com 3694

normalization, ReLU activation repeated three times and the input layer output combined with the last

layer. Other sizes of locking were attempted, but produced either poor results or were slow in training.

For example, 3 training only the last 5 blocks provided poor results, which were only slightly better

than predicting a steering angle of zero for all inputs. Training all the layers also produced worse

results on the validation set compared to blocking the first 45 (0.0870 on the validation set after 32

epochs). The model took as input images of 224x224x3 (downsized and mildly stretched from the

original Udacity data). The only augmentation provided for this model was mirrored images. Due to

the size constraints of the input into ResNet50, cropping was not used as it involved stretching the

image. The filters in the pretrained model were not trained on stretched images, so the filters may not

activate as well on the stretched data (RMSE of 0.0891 on the validation set after 32 epochs).

Additionally, using the left and the right cameras from the training set proved not to be useful for the

32 epochs used to train (0.17 RMSE on the validation set).

2.3 Deep Neural Networks incorporarion with the Hardware

A typical feed-forward DNN is composed of multiple processing layers stacked together to

extract different representations of the input [30]. Each layer of the DNN increasingly abstracts the

input, e.g., from raw pixels to semantic concepts. For example, the first few layers of an autonomous

car DNN extract low-level features such as edges and directions, while the deeper layers identify

objects like stop signs and other cars, and the final layer outputs the steering decision (e.g., turning left

or right).

Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8115 www.ijariie.com 3695

Each layer of a DNN consists of a sequence of individual computing units called neurons. The

neurons in different layers are connected with each other through edges. Each edge has a corresponding

weight.Popular activation functions include ReLU (Rectified Linear Unit) , sigmoid, etc. The edge

weights of a DNN is inferred during the training process of the DNN based on labeled training data.

Most existing DNNs are trained with gradient descent using backpropagation. Once trained, a DNN

can be used for prediction without any further changes to the weights. For example, an autonomous car

DNN can predict the steering angle based on input images.

2.4 Data Collection

We use a real-world dataset released by Udacity as a baseline to check the inconsistency of

autonomous driving systems. From the dataset, we select two episodes of highway driving video where

obvious changes of lighting and road conditions can be observed among frames. To train our UNIT

model, we also collect images of extreme scenarios from Youtube. In the experiments, we select snow

and hard rain, two extreme weather conditions to transform real-world driving images. To make the

variance of collected images relatively large, we only search for videos which is longer than 20mins.

3 Future Work

Tests generates realistic synthetic images by applying different image transformations on the seed

images. However, these transformations are not designed to be exhaustive and therefore may not cover

all realistic cases. While our transformations like rain and fog effects are designed to be realistic, the

generated pictures may not be exactly reproducible in reality due to a large number of unpredictable

factors, e.g., the position of the sun, the angle and size of the rain drops. etc. However, as the image

processing techniques become more sophisticated, the generated pictures will get closer to reality. A

complete DNN model for driving an autonomous vehicle must also handle braking and acceleration

besides the steering angle. We restricted ourselves to only test the accuracy of the steering angle as our

tested models do not support braking and acceleration yet. However, our techniques should be readily

applicable to testing those outputs too assuming that the models support them.

Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8115 www.ijariie.com 3696

These models are far from perfect and there is substantial research that still needs to be done on

the subject before models like these can be deployed widely to transport the public. These models may

benefit from a wider range of training data. For a production system, a model would have to be able to

handle the environment in snowy conditions. Generate adversarial models, GANs, could be used to

transform a summer training set into a winter one. Additionally, GANs could be used to generate more

scenes with sharp angles. Additionally, a high quality simulator could be used with deep reinforcement

learning. A potential reward function could be getting from one point to another while minimizing

time, maximizing smoothness of the ride, staying in the correct lane/following the rules of the road,

and not hitting objects.

4.CONCLUSION

In this paper, we propose Deep CNN, an unsupervised GANbased approach to synthesize

authentic driving scenes with various weather conditions to test DNN-based autonomous driving

systems. In principle, Deep CNN applies the metamorphic testing methodology to detect the

inconsistent autonomous driving behaviors across different driving scenes. The experimental results on

three real-world Udacity autonomous driving models indicate that Deep CNN can successfully detect

thousands of inconsistent behaviors. Furthermore, our results also show that Deep CNN can be promis-

ing in measuring the robustness of autonomous driving systems. Currently, Deep CNN only supports

two weather conditions, we plan to support more weather conditions to fully test autonomous driving

systems under various conditions in the near future.

