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ABSTRACT 

 

An adversarial network is a deep learning framework that makes use of multiple deep learning network 

as “adversaries” critiquing the results generated to maximize the probability of generative results. 

This can be employed in training a Self Driving Car. This cannot be embedded in a self driving car 

until fully trained in a simulated environment. The self driving car and it’s sensors are to be operated 

in a virtual environment. The model is so trained that an actor critic model M trains to manoeuvre the 

vehicle with a reward based system. A discriminator network uses it’s pre-trained models to critique 

the efficiency of the self driving car. The car is set in obstacle courses which it is to avoid. The 

unsupervised learning process if critiqued using a discriminator like a mentor to the network, until the 

self driving car learns to avoid all obstacles. Further the camera sensors of the car using YOLO(You 

only look once algorithm) to detect objects and noise based transformations are applied to understand 

the the range of objects to avoid and signs to read. Convolution neural networks are used for the 

YOLO algorithm to actively distinguish objects to avoid, road unevenness to reduce speeds, speed 

breakers to tackle and unpredictable human behaviour to account for 

 

Keyword.:- adversarial, probability, Self Driving Car, sensors, manoeuvre, obstacle, YOLO, 

Convolution neural networks 

 
 

1 EXISTING MODULE 

 

While Deep Neural Networks (DNNs) have established the fundamentals of DNN-based 

autonomous driving systems, they may exhibit erroneous behaviors and cause fatal accidents. To 

resolve the safety issues of autonomous driving systems, a recent set of testing techniques have been 

designed to automatically generate test cases, e.g., new input images transformed from the original 

ones. Unfortunately, many such generated input images often render inferior authenticity, lacking 

accurate semantic information of the driving scenes and hence compromising the resulting efficacy and 

reliability. In this paper, we propose Deep CNN, an unsupervised framework to automatically generate 

large amounts of accurate driving scenes to test the consistency of DNN-based autonomous driving 

systems across different scenes. 

In particular, Deep CNN delivers driving scenes with various weather conditions (including those 

with rather extreme conditions) by applying the Generative 

Adversarial Networks (GANs) along with the corresponding real-world weather scenes. Moreover, we 

have implemented Deep CNN to test three well-recognized DNN-based autonomous driving systems. 

Experimental results demonstrate that Deep CNN can detect thousands of behavioral inconsistencies 

for these systems. 
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Based on our assumption, an autonomous driving system is consistent if its steering angle 

prediction does not change after modifying the weather condition of driving images. However, this 

assumption is too strong to be practical since minor steering angle change incurred by the scene change 

may still fall into the safe zone. Hence, similar with prior work [28], we relax the assumption and 

accept the prediction if the difference between the predicted steering angles of original and transformed 

images can be within an error bound. 

 

2. PROPOSED MODEL 

 

We propose a conceptually simple and lightweight framework for deep reinforcement learning 

that uses asynchronous gradient descent for optimization of deep neural network controllers. We 

present asynchronous variants of four standard reinforcement learning algorithms and show that 

parallel actor-learners have a stabilizing effect on training allowing all four methods to successfully 

train neural network controllers. The best performing method, an asynchronous variant of actor-critic, 

surpasses the current state-of-the-art on the Atari domain while training for half the time on a single 

multi-core CPU instead of a GPU. Furthermore, we show that asynchronous actor-critic succeeds on a 

wide variety of continuous motor control problems as well as on a new task of navigating random 3D 

mazes using a visual input. 

 

2.1 Systematic Testing with Neuron Coverage 

 

The input-output space (i.e., all possible combinations of inputs and outputs) of a complex system 

like an autonomous vehicle is too large for exhaustive exploration. Therefore, we must devise a 

systematic way of partitioning the space into different equivalence classes and try to cover all 

equivalence classes by picking one sample from each of them. In this project, we leverage neuron 

coverage as a mechanism for partitioning the input space based on the assumption that all inputs that 

have similar neuron coverage are part of the same equivalence class (i.e., the target DNN behaves 

similarly for these inputs). Neuron coverage was originally proposed by Peietal. for guided differential 

testing of multiple similar DNNs . It is defined as the ratio of unique neurons that get activated for 

given input(s) and the total number of neurons in a DNN: 

 

 

Neuron Cover are = |Activated Neurons| /|Total Neurons| 

 

An individual neuron is considered activated if the neuron’s output (scaled by the overall layer’s 

outputs) is larger than a DNN-wide threshold. In this paper, we use 0.2 as the neuron activation 

threshold for all our experiments. Similar to the code-coverage-guided testing tools for traditional 

software, DeepTest tries to generate inputs that maximize neuron coverage of the test DNN. 

 

For all neurons in fully-connected layers, we can directly compare their outputs against the neuron 

activation threshold as these neurons output a single scalar value. By contrast, neurons in convolutional 

layers output multidimensional feature maps as each neuron outputs the result of applying a 

convolutional kernel across the input space . In such cases, we compute the average of the output 

feature map to convert the multidimensional output of a neuron into a scalar and compare it to the 

neuron activation threshold. 

 

2.2 Transfer Learning 

 

For this model, we used the idea of transfer learning. Transfer learning is a way of using high 

quality models that were trained on existing large datasets. The idea of transfer learning is that features 

learned in the lower layers of the model are likely transferable to another dataset. These lower level 

features would be useful in the new dataset such as edges. Of the pre-trained models available, 

ResNet50 had good performance for this dataset. This model was trained on ImageNet. The weights of 

the first 15 ResNet blocks were blocked from updating (first 45 individual layers out of 175 total). The 

output of ResNet50 was connected to a stack of fully connected layers containing 512, 256, 64, and 1 

different units respectively. The architecture of this model can be seen with the overall number of 

param.eters being 24,784,641. The fully connected layers used ReLUs as their activation. The 

ResNet50 model consists of several different repeating blocks that form residual connections. The 

number filters varies from 64 to 512. A block is consistent of a convolutional layer, batch 



Vol-4 Issue-2 2018  IJARIIE-ISSN(O)-2395-4396 
 
 

8115 www.ijariie.com 3694 

 

normalization, ReLU activation repeated three times and the input layer output combined with the last 

layer. Other sizes of locking were attempted, but produced either poor results or were slow in training. 

For example, 3 training only the last 5 blocks provided poor results, which were only slightly better 

than predicting a steering angle of zero for all inputs. Training all the layers also produced worse 

results on the validation set compared to blocking the first 45 (0.0870 on the validation set after 32 

epochs). The model took as input images of 224x224x3 (downsized and mildly stretched from the 

original Udacity data). The only augmentation provided for this model was mirrored images. Due to 

the size constraints of the input into ResNet50, cropping was not used as it involved stretching the 

image. The filters in the pretrained model were not trained on stretched images, so the filters may not 

activate as well on the stretched data (RMSE of 0.0891 on the validation set after 32 epochs). 

Additionally, using the left and the right cameras from the training set proved not to be useful for the 

32 epochs used to train (0.17 RMSE on the validation set). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Deep Neural Networks incorporarion with the Hardware 

 

A typical feed-forward DNN is composed of multiple processing layers stacked together to 

extract different representations of the input [30]. Each layer of the DNN increasingly abstracts the 

input, e.g., from raw pixels to semantic concepts. For example, the first few layers of an autonomous 

car DNN extract low-level features such as edges and directions, while the deeper layers identify 

objects like stop signs and other cars, and the final layer outputs the steering decision (e.g., turning left 

or right). 
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Each layer of a DNN consists of a sequence of individual computing units called neurons. The 

neurons in different layers are connected with each other through edges. Each edge has a corresponding 

weight.Popular activation functions include ReLU (Rectified Linear Unit) , sigmoid, etc. The edge 

weights of a DNN is inferred during the training process of the DNN based on labeled training data. 

Most existing DNNs are trained with gradient descent using backpropagation. Once trained, a DNN 

can be used for prediction without any further changes to the weights. For example, an autonomous car 

DNN can predict the steering angle based on input images. 

 

2.4 Data Collection 

 

We use a real-world dataset released by Udacity as a baseline to check the inconsistency of 

autonomous driving systems. From the dataset, we select two episodes of highway driving video where 

obvious changes of lighting and road conditions can be observed among frames. To train our UNIT 

model, we also collect images of extreme scenarios from Youtube. In the experiments, we select snow 

and hard rain, two extreme weather conditions to transform real-world driving images. To make the 

variance of collected images relatively large, we only search for videos which is longer than 20mins. 

 

 

 

3 Future Work 

 

Tests generates realistic synthetic images by applying different image transformations on the seed 

images. However, these transformations are not designed to be exhaustive and therefore may not cover 

all realistic cases. While our transformations like rain and fog effects are designed to be realistic, the 

generated pictures may not be exactly reproducible in reality due to a large number of unpredictable 

factors, e.g., the position of the sun, the angle and size of the rain drops. etc. However, as the image 

processing techniques become more sophisticated, the generated pictures will get closer to reality. A 

complete DNN model for driving an autonomous vehicle must also handle braking and acceleration 

besides the steering angle. We restricted ourselves to only test the accuracy of the steering angle as our 

tested models do not support braking and acceleration yet. However, our techniques should be readily 

applicable to testing those outputs too assuming that the models support them. 
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These models are far from perfect and there is substantial research that still needs to be done on 

the subject before models like these can be deployed widely to transport the public. These models may 

benefit from a wider range of training data. For a production system, a model would have to be able to 

handle the environment in snowy conditions. Generate adversarial models, GANs, could be used to 

transform a summer training set into a winter one. Additionally, GANs could be used to generate more 

scenes with sharp angles. Additionally, a high quality simulator could be used with deep reinforcement 

learning. A potential reward function could be getting from one point to another while minimizing 

time, maximizing smoothness of the ride, staying in the correct lane/following the rules of the road, 

and not hitting objects. 

 

 

4.CONCLUSION 

 

 

In this paper, we propose Deep CNN, an unsupervised GANbased approach to synthesize 

authentic driving scenes with various weather conditions to test DNN-based autonomous driving 

systems. In principle, Deep CNN applies the metamorphic testing methodology to detect the 

inconsistent autonomous driving behaviors across different driving scenes. The experimental results on 

three real-world Udacity autonomous driving models indicate that Deep CNN can successfully detect 

thousands of inconsistent behaviors. Furthermore, our results also show that Deep CNN can be promis- 

ing in measuring the robustness of autonomous driving systems. Currently, Deep CNN only supports 

two weather conditions, we plan to support more weather conditions to fully test autonomous driving 

systems under various conditions in the near future. 


