
Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

20319 www.ijariie.com 1725

SELF-EVOLVING PLATFORMER

Shreyash Srivastava
1
, Sarthak Sharma

1
, Rahul Tripathi

1
, Samanvitha S

1
 and K Deepa Shree

2

1
 Student, Department of CSE, Dayananda Sagar Academy of Technology and Management, Bangalore,

India
2
 Assistant Professor, Department of CSE, Dayananda Sagar Academy of Technology and Management,

Bangalore, India

ABSTRACT
Digital games have been one of the most popular genres of software ever since the boom of computers. The current

market of video games holds a volume of $250Bn and is growing yearly. Hence video games hold the potential to

have the largest share of global audience. Video games evolve every year and machine learning and artificial

intelligence have been a recent trend. The Self-evolving Platformer software development kit aims to be the layer

that bridges the gap between classic video games and the artificial intelligence layer. SEP-SDK leverages the

features of machine learning tools to create a generative and interactive environment for the player giving a

personalized and immersive environment.

Keyword: - Game, Platformer, SDK, Artificial Intelligence, GAN

1. INTRODUCTION

The self-evolving platformer SDK serves as a compelling proof of concept, showcasing the utilization of artificial

intelligence in crafting a dynamic environment within an existing game. This innovative SDK has been seamlessly

integrated into Super Mario, one of the industry's longest-standing games, enabling the generation of levels based on

prompts provided by users. Within this paper, we delve into the integration of cutting-edge stable diffusion

technology, employed to produce in-game assets in real-time. The introduction of artificial intelligence has rendered

traditional GAN models, which developers have relied upon for years, obsolete. By leveraging stable diffusion and

generative AI, we are empowered to process information swiftly and generate game assets on-the-fly, thereby

significantly reducing the overall size of the game build. Consequently, players are afforded a more immersive and

unparalleled gaming experience that is truly unique.

2. PROBLEM STATEMENT

The existing approaches and methodologies for game development heavily rely on traditional architectural design,

which unfortunately falls short in seamlessly integrating artificial intelligence (AI) into games. This limitation arises

due to the lack of provisions within the current tools and frameworks, impeding the seamless incorporation of AI

capabilities. Moreover, these tools suffer from a lack of programmability, constraining developers from customizing

and extending their functionalities to meet specific requirements. Additionally, the absence of robust support for

external plugins restricts the integration of third-party AI libraries and services, further impeding the utilization of

AI in game development. Consequently, there is a pressing need for novel methods and tools that address these

shortcomings, empowering game developers to effortlessly leverage AI and explore its vast potential for enhancing

gameplay, creating dynamic environments, and delivering immersive player experiences.

3. RELATED WORKS

These publications have served as valuable sources of inspiration for our research, highlighting the immense

potential of adversarial networks in reaching a wider audience within popular games [1]. The study on game

assessment using GANs elucidates the application of generated adversarial networks in dynamically generating

levels within games, leveraging an analysis of prevalent patterns [2]. Furthermore, delving deeper into the

exploration of game levels and dynamics, we encountered a publication that elucidates the workings of procedural

level generation and its applicability in games like Super Mario [3]. Additionally, we came across alternative

Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

20319 www.ijariie.com 1726

approaches such as N-gram models, which utilize existing datasets to generate novel levels, offering another

perspective on level generation techniques. These insights from the aforementioned papers have significantly

influenced our research direction, shaping our understanding of the possibilities and challenges associated with

leveraging AI techniques for game content generation.

4. METHODS AND MODULES

The SEP-SDK’s functionality can be broadly divided into seven abstract modules which are:

4.1 Game-Engine

The current implementation uses the pygame package as the game engine. Pygame offers a number of utilities for

drawing game frames and synchronizing the rendering of those frames. It also provides utilities for implementing

2D physics in the game. The SEPSDK uses the game engine as an interface, and as such, it can be swapped with any

other game engine. The module also imports the other sprites and assets needed in the game. It then initializes the

SDK with a skeleton setup, which the other modules use.

The game state is updated by the game logic. The game logic is responsible for determining the behavior of the

sprites in the game. The game frames are rendered by the renderer. The renderer is responsible for drawing the

sprites to the screen. The next frame is waited for by the clock object. The game loop continues until the user quits

the game. When the user quits the game, the module cleans up the resources that it used.

4.2 Prompt input interface

After receiving the user's prompt, it is crucial to clean and prepare it for further processing. This involves utilizing a

prompt tokenizer, which takes the user's input and extracts significant keywords and objects. The tokenizer then

generates a bag of words, comprising the essential elements from the prompt. This bag of words is then seamlessly

transferred to the subsequent step of the pipeline, where it undergoes further processing and analysis to produce the

desired outcome. By effectively cleaning the prompt and extracting its key components, the pipeline can effectively

understand and address the user's needs or inquiries, leading to more accurate and relevant responses.

Fig -1: Taking user prompt

4.3 Object sentiment classifier

Once the bag of words is obtained, it serves as a crucial input for determining the sentiment associated with each

word or object. This sentiment analysis helps categorize the words into different in-game characters for the current

game, such as power-ups, walls, coins, in-game currency, non-playing characters, and enemies like Goomba in the

case of Super Mario. Additionally, the sentiment analysis assigns a weight to each object, indicating the percentage

of certain behaviors and in-game interactions that the object would exhibit.

Subsequently, these categorized objects and their corresponding properties are utilized to generate images through

the utilization of object names and properties as input for stable diffusion. The images generated from stable

diffusion undergo further refinement to eliminate any background noise using a Python package called "bg-

remover." This cleaning process ensures that the resulting images are clear and free from any distracting or

unwanted elements, providing a visually pleasing and immersive gaming experience.

4.4 Real-world Object to in-game Mapper

After undergoing the necessary cleaning procedures, the images from the previous step undergo a crucial

transformation into the spruce format. This format conversion serves as a pivotal preparatory stage before the

images are seamlessly integrated into the game engine. The game engine plays a pivotal role in the overall gaming

Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

20319 www.ijariie.com 1727

experience by serving as the core component responsible for rendering and executing the game's logic. Within the

engine, the converted images are meticulously mapped onto in-game objects, enabling a seamless fusion of the

visual and interactive elements. This mapping process establishes a vital connection between the appearance and

behavior of the in-game objects.

Fig -2: Generated Level Start

Once successfully imported into the game, these transformed objects become interactive entities that players can

engage with, imbuing the game with a heightened level of realism and immersion, by integrating the cleaned images

into the game engine and mapping them onto in-game objects, players are presented with a visually appealing and

dynamic virtual world. The inclusion of interactive objects possessing unique characteristics not only introduces a

range of options and variations to the gameplay but also cultivates a profound sense of involvement and active

participation.

This elevated degree of interactivity guarantees that players establish a deeper bond with the virtual world,

culminating in a more gratifying and absorbing gaming venture. By incorporating interactive objects with distinct

properties, players are granted agency and the ability to shape their experiences within the game.

The described process is of significant importance in game development, as it plays a crucial role in enhancing

immersion and interactivity. By transforming cleaned images into interactive objects with distinct properties, players

are able to fully immerse themselves in the virtual environment. This heightened level of engagement empowers

players to have a sense of control and influence over their gaming experiences. Moreover, the inclusion of diverse

objects adds a much-needed variety, ensuring that the gameplay remains fresh and captivating. Additionally,

integrating visuals into the storytelling aspect of the game enhances the overall narrative experience, making it more

compelling and memorable for players. Ultimately, the aim of this process is to maximize player satisfaction and

retention by creating an engaging and immersive gameplay journey filled with interactive elements.

Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

20319 www.ijariie.com 1728

Fig -3: Generated Level End

4.5 Level generator

In the final step, the process begins with the utilization of a statistical language model known as an n-gram model.

This model plays a vital role in generating new dynamic levels. It examines the textual content of existing levels and

identifies patterns and correlations in the word order. By understanding these patterns, the n-gram model becomes

capable of generating fresh levels that bear resemblance to the existing ones while incorporating some degree of

variation.

To further enhance the generated levels, newly created sprite sheets are employed. These sprite sheets consist of

images that represent various objects within the game. The generated levels are then adorned with these sprite

sheets, effectively assigning visual representations to the corresponding in-game objects. Each level object is

associated with a weight, which determines its likelihood of being selected. This weighting mechanism helps to

introduce diversity and prevent the gameplay from becoming monotonous or predictable.

In summary, this process harnesses the power of an n-gram model to analyze and understand existing level patterns,

enabling the generation of new dynamic levels. The incorporation of sprite sheets and their weighted attachment to

level objects adds visual appeal and injects variation into the gameplay, contributing to a more engaging and

enjoyable gaming experience.

5. CONCLUSIONS

Stable diffusion is a type of generative model that can be used to generate images from noise. It works by gradually

adding noise to an image until it resembles the desired image. This process is called diffusion, and it is what gives

stable diffusion its name. Our method uses stable diffusion to generate high-quality images of game assets. We start

with a random noise image and then gradually add noise to it until it resembles the desired game asset. We can

control the amount of noise that we add to the image, which allows us to generate a variety of different game assets.

Our method can be used to generate game assets for a variety of different genres. For example, we can use our

method to generate characters for first-person shooters, objects for role-playing games, and environments for real-

time strategy games. We can also use our method to generate game assets that are tailored to the specific needs of

the player. For example, we can generate game assets that are more challenging or more enjoyable to play. Our

Vol-9 Issue-3 2023 IJARIIE-ISSN(O)-2395-4396

20319 www.ijariie.com 1729

method is still under development, but it has the potential to be a valuable tool for game developers who want to

create high-quality game assets quickly and easily. Our method is able to generate game assets in real-time, which

means that game developers can create new levels or characters without having to wait for the assets to be

generated. This can save game developers a significant amount of time and effort. Overall, we believe that our

method is a promising new tool for generating dynamic game assets in real-time. We believe that our method has the

potential to revolutionize the way that game assets are created.

6. REFERENCES

[1]. Matthew C. Fontaine1 et al - Illuminating Mario Scenes in the Latent Space of a Generative Adversarial

Network. 21 Jun 2021.

[2]. Karp, Rafał & Swiderska, Zaneta. (2021). Automatic generation of graphical game assets using GAN. 7-12.

10.1145/3477911.3477913.

[3]. Kerssemakers, Manuel & Tuxen, Jeppe & Togelius, Julian & Yannakakis, Georgios. (2012). A procedural

procedural level generator generator. 2012 IEEE Conference on Computational Intelligence and Games, CIG 2012.

335-341. 10.1109/CIG.2012.6374174.

[4]. Dahlskog, Steve & Togelius, Julian. (2014). A Multi-level Level Generator. 10.1109/CIG.2014.6932909.

[5]. Awiszus, M.; Schubert, F.; and Rosenhahn, B. 2020. TOADGAN: coherent style level generation from a single

example. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,

volume 16, 10–16.

[6]. J. Togelius, N. Shaker, and M. J. Nelson, “Introduction,” in Procedural Content Generation in Games: A

Textbook and an Overview of Current Research, N. Shaker, J. Togelius, and M. J. Nelson Eds. Springer, 2014.

[7]. L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular Automata for Real-time Generation of Infinite Cave

Levels,” in Proceedings of the ACM Foundations of Digital Games. ACM Press, June 2010.

