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ABSTRACT 

This paper acquaints a methodology with assumption investigation which utilizes different content standardization 

methods in Natural Language Processing (NLP) for converting a text into vector and briefly explains the the 

importance of standardization methods and how they are used in python with the help of its Natural Language Toolkit 

(NLTK) library. Finally this paper analyzes different algorithms in Supervised Machine Learning with comparison of 

two Machine Learning models, i.e., Logistic Regression and Naive Bayes for linear classification with the help of a 

data set. 
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1 INTRODUCTION 

Film surveys help clients to choose if the film merits their time. A rundown of all surveys for a film can assist clients with settling on 

this choice by not burning through their time perusing all audits. Film rating sites are regularly utilized by pundits to post remarks 

and rate motion pictures which assist watchers with choosing if the film merits viewing. Supposition investigation can decide the 

demeanor of pundits relying upon their surveys. Assessment investigation of a film audit can rate how positive or negative a film 

survey is and subsequently the general rating for a film. Accordingly, the way toward comprehension if an audit is positive or 

negative can be computerized as the machine learns through preparing and testing the information [1]. 

Characteristic language preparing (NLP) is the connection among PCs and human language.Normal language alludes to dis- 

course investigation in both discernible discourse, just as text of a language. NLP systems capture meaning from an input of words 

(sentences, paragraphs, pages, etc.). This project intends to execute different content handling strategies in NLP and afterward 

manufacture a Machine Learning Model so as to order the given survey as positive or negative. 

 

2 TEXT NORMALIZATION 

The process of transforming a text into a canonical (standard) form is called as Text Normalization. A few stages must be acted so 

as to standardize the content and convert it into fitting structure as we can’t give the PC text as information ,which would then be 

able to be given as contribution to the machine learning (ML) model. Thus the amount of different information that the computer 

has to deal with gets reduced subsequently and improves the efficiency. Library utilized for this is given in [2]. Steps associated 

with this cycle are shown in Figure 1 and explained in the following sections. 

 
2.1 Removing Stopwords 

A famous methodology to diminish the commotion of literary information is to eliminate stopwords by utilizing precompiled 

stopword records or more advanced strategies for dynamic stopword distinguishing proof[3]. A stopword is an ordinarily utilized 

word, (for example, ”the”, ”an”, ”an”, ”in”) that a web crawler has been modified to disregard, both when ordering sections for 

looking and while recovering them as a result of a search query. Natural Language Toolkit (NLTK) in python has a rundown of 

stopwords put away in 16 unique dialects. Such words have no commitment to the conclusion of a specific sentence and henceforth 

can be deleted from the first content. Consider this content string – ”There is a pen on the table”. Presently, the words ’is’, ’an’, 

’on’, and ’the’ add no importance to the announcement while parsing it. While words like ’there’, ’book’, and ’table’ are the catch 

phrases and mention to us what the sentence is about. However, we should avoid removing stopwords when performing the tasks in 

which output speech is more significant. 
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>>>tknzr = TweetTokenizer(strip handles=True, reduce len=True) 

>>>s1 = ’ adam: This is waaaaayyyy too much for you!!!!!!’ 

>>>tknzr.tokenize(s1) 
Tokens: [’:’, ’This’, ’is’, ’waaayyy’, ’too’, ’much’, ’for’, ’you’, ’!’, ’!’, ’!’] 

>>>SExprTokenizer().tokenize(’(a b (c d)) e f (g)’) 
Tokens: [’(a b (c d))’, ’e’, ’f’, ’(g)’] 

>>>s1 = ’@remy: This is waaaaayyyy too much for you!!!!!!’ 

>>>tknzr.tokenize(s1) 
Tokens: [’@remy: ’, ’This’, ’is’, ’waaaaayyyy ’, ’too’, ’much’, ’for’, ’you!!!!!!’] 

 
 

Figure 1: Text Normalization 

 
2.2 Tokenization 

Tokenization is a method of isolating a bit of text into smaller units called tokens. Here, tokens can be either words, subwords, or 

characters. Subsequently, tokenization can be comprehensively characterized into 3 kinds – word, character, and subword tokeniza- 

tion. For instance, think about the sentence: ”Never surrender”. The most well-known method of framing tokens depends on space 

[4]. Expecting space as a delimiter, the tokenization of the sentence brings about 2 tokens – Never-surrender. As every token is a 

word, it turns into a case of word tokenization. Thus, tokens can be either characters or subwords as shown in this Example 1. 

Example 1. Let us consider “smarter”. Then Character tokens: s-m-a-r-t-e-r and Subword tokens: smart-er. 

 
2.2.1 Different types of tokenizers in NLTK 

Tokens can be paragraphs, sentences, or individual words. NLTK’s tokenize module gives a bunch of tokenizers to part the content 

into tokens. Here, a few of them are listed [5]. 

TweetTokenizer: It is designed to be flexible and easy to adapt to new domains and tasks. This can reduce length if repeated 

more than 3 times and removes the userhandle. Here is an example: 
 

SExprTokenizer: This tokenizer is Symbolic Expressions Tokenizer. It splits a string into substrings using a regular expression 

which matches either the tokens or the separators between tokens. It isolates the string into tokens dependent on parenthesized 

articulations and whitespace. Here is an example: 
 

SpaceTokenizer: Based on space, tokens are created. Here is an example: 
 

RegexpTokenizer: This tokenizer splits a string into substrings using a regular expression which matches either the tokens or the 

separators between tokens. Parameter of pattern is used to build this tokenizer. This can be an ideal tokenizer in classification tasks 

like sentiment analysis, since, more flexible and more control is in our hands to decide how to form tokens. A regular expression 

(sometimes called a rational expression) is a sequence of characters that define a search pattern, mainly for use in pattern matching 

with strings, or string matching, i.e., ”find and replace” - like operations [6]. Regular expression which can be used: ’ w +’, where 

w matches any word character. Basically alpha-numeric, special characters are excluded like , !, %, $. The customary articulation 

ab+c will give abc, abbc, abbc,., etc. For example 
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Stemming for ”studies” is ’studi’, Stemming for ”studying” is ’studi’, Stemming for ”cries” is ’cri’. 

 

Lemma for ”studies” is ’study’, Lemma for ”studying” is ’study’, Lemma for ”cries” is ’cry’, Lemma for ”cry” is ’cry’. 

”Connections” → ’Connect’, ”Connected” → ’Connect’, ”Connecting” → ’Connect’, ”Connection” → ’Connect’ 

 

”destabilized” is stemmed to ’dest’ in LancasterStemmer while, utilizing PorterStemmer it is ’destabl’ 

 
 

 

2.3 Deriving Root Word 

In the zones of Natural Language Processing we run over circumstances where at least two words have a typical root. For instance, 

the three words - ’concurred’, ’concurring’ and ’concurrable’ have a similar root word concur. A search including any of these 

words should regard them as a similar word which is the root word. In NLP, there are two principle procedures to create root words 

specifically - Stemming and Lemmatization. Stemming and Lemmatization are Text Normalization (also once in a while called 

Word Normalization) methods in the field of Natural Language Processing that are utilized to get root words from the inflected 

words [7]. 

Stemming and Lemmatization both produce the root type of an inflected word. The thing that matters is that stem probably 

won’t be a genuine word while, lemma is a real language word [8]. Stemming calculation works by cutting the postfix from the 

word. From a more extensive perspective cuts either the start or end of the word. Consider an example: 
 

Actually, Lemmatization is an all the more remarkable activity, and it thinks about morphological examination of the words. It 

restores the lemma which is the base type of all its inflectional structures. Inside and out semantic information is needed to make 

word references and search for the correct type of the word. 
 

 

2.3.1 Types of Stemmers in NLTK 

There are two types of stemmers: 

1. PorterStemmer 

2. LancasterStemmer 

There are other non-english stemmers also. 

PorterStemmer: In this the calculation doesn’t follow phonetics rather a set of 5 rules for various cases that are applied in 

stages (bit by bit) to create stems. It is known for its effortlessness and speed. It utilizes Suffix Stripping to create stems [9]. For 

example: 
 

LancasterStemmer: It is an iterative calculation with one table containing around 120 standards listed by the last letter of a 

suffix. In every cycle, it attempts to locate a material guideline by the last character of the word. Each standard indicates either an 

erasure or substitution of a completion. In the event with no such guideline, it ends. It additionally ends if a word begins with a vowel 

and there are just two letters left or if a word begins with a consonant and there are just three characters left. If something else is 

there, the standard is applied and the cycle rehashes. LancasterStemmer is likewise basic, yet hefty stemming because of emphases, 

and over-stemming may happen. Over-stemming makes the stems not linguistics, they may have no significance. Over-stemming 

makes the stems not phonetic, or they may have no meaning. For instance: 
 

 

2.4 Feature Extraction 

Machine Learning calculations can’t take a shot at the crude content legitimately. Along these lines, we need some component 

extraction procedures to change over content into a matrix (or vector) of highlights [10]. Probably the most well known strategies 

that include extraction are: 

 

Consider the review : Movie was awesome!. I would love to watch it 100 times and it costed me 50$ for one show! 

For this sentence after applying RegexpTokenizer tokens generated are 

Tokens : [’Movie’, ’was’, ’awesome’, ’I’, ’would’, ’love’, ’to’, ’watch’, ’it’, ’100’, ’times’, ’it’, ’costed’, ’me’, ’50’, ’for’, 

’one’, ’show’] 



Vol-6 Issue-6 2020               IJARIIE-ISSN(O)-2395-4396 

   

13051 www.ijariie.com 106 

\ 

1. Bag-of-Words 

2. TF-IDF 

Bag-of-Words: It is a method to extract features from text documents. These highlights can be utilized for preparing ML 

calculations. It makes a jargon of the apparent multitude of extraordinary words happening in all the archives in the preparation set. 

In this we make a Feature Matrix based on one hot encoding. A significant disadvantage in utilizing this model is that it leads to a 

high dimensional feature vector due to large size of vocabulary, V. Bag-of-words doesn’t leverage co-occurrence statistics between 

words. It prompts a profoundly scanty vectors as there is nonzero esteem in measurements comparing to words that happen in the 

sentence. The request for the event of words is lost, as we make a vector of token in randomized order - ’a good movie’, ’not a good 

movie’, ’did not like’. One solution for this is considering N-grams (mostly bigrams) instead of individual words, i.e., unigrams. 

      TF-IDF Vectorizer: TF-IDF is an abbreviation for Term Frequency Inverse Document Frequency. This is very common 

algorithm     to transform text into a meaningful representation of numbers which is used to fit machine algorithm for prediction. Term 

frequency  specifies how frequently a term appears in the entire document. It can be thought of as the probability of finding a word 

within the     document and can be expressed as 

𝑡𝑓(𝑤𝑖, 𝑟𝑗) =
𝑁o. of times 𝑤𝑖 occurs i𝑛 𝑟𝑗

𝑇otal no. of words in 𝑟𝑗
 

 
  A different scheme for calculating t f is log normalization and it is formulated as 

 

t f (t, d) = log(1 + ft,d )  
  IDF: IDF stands for Inverse Document Frequency. The inverse document frequency is a measure of whether a term is rare or 

frequent across the documents in the entire corpus. It highlights those words which occur in very few documents across the corpus, 

or in simple language, the words that are rare have high IDF scores. Mathematically, 

TF-IDF = TF * IDF 

Therefore, a high TF-IDF score is obtained by a term that has a high frequency in a document, and low document frequency in the 

corpus [11]. 

 

3 CLASSIFICATION ALGORITHMS IN ML 

In machine learning and statistics, classification is a supervised learning approach in which the computer program learns from the 

input data and then uses this learning to classify new observations. Few types of classification algorithms in machine learning are: 

1. Logistic Regression 

2. Naive Bayes 

 
3.1 Logistic Regression 

It is a statistical method for analyzing a data set in which there are one or more independent variables that determine an outcome. 

One should consider utilizing logistic regression when the Y variable takes on just two qualities [12].  Such a variable is alluded  

to as binary or dichotomous. Dichotomous essentially implies two classifications, for example - yes/no, deficient/non-blemished, 

achievement/disappointment, etc. Binary refers to 0’s and 1’s. 

 
3.2 Naive Bayes Classifier 

The Naive Bayes classifier is a simple classifier that classifies based on probabilities of events. It is an arrangement strategy 

dependent on Bayes’ Theorem with the supposition of freedom among indicators [13]. 

 

𝑃(𝐴\𝐵) =
𝑃(𝐵\𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 

  where, P(A\B) is the probability of A given B. Here, A will be dependent variable (which is to be predicted) and B will be 

  independent variable (Features). 

  

4 APPLICATION 

In this paper we have made a comparison of the Logistic Regression and Naive Bayes methods for sentiment analysis and shown 

the analysis. 

\ 
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4.1 Logistic Regression Model v/s Naives Bayes Model 

There are prominent models to wade in various ML issues. Two of them Logistic regression and Naive Bayes are popularly 

recognized ,these two provide results which are analogous but still are contrasting,the reason is they take into account different 

viewpoints. Naive Bayes is based on the concept that it extracts probability of the situation that a component vector is related with 

a label. It is based on the Bayes’s hypothesis. The algorithm have certain assumptions which is unaffected from the realistic facts 

which says the component vectors are independent which is totally a hypothetical condition and is not always feasible. Whereas 

Logistic regression is an algorithm which calculates the probability that a feature is associated to a class. This algorithm is preferred 

because it can give satisfactory results even if the some of the features are found to be associated to a certain class. We have used 

the following features to do the comparison. 

1. Both algorithms (Naive Bayes and Logistic Regression) are used for classification Cases 

Though both algorithms are mainly used for solving problems that include classification tasks , the main difference is , 

Logistic Regression is limited for only binary classification e.g. Predicting whether a person is infected with a disease or not 

, mail is spam or not spam , given sentiment is positive or negative , etc. whereas Naive Bayes Algorithm can be applied on 

multiclass classification problems also. 

2. Algorithm’s Working 

The workings of both the algorithms are very different . Naive Bayes algorithm is a probabilistic approach whereas , in 

Logistic Regression we use sigmoid function as activation function to map the result between 0 and 1 . Naive Bayes classifi- 

cation calculation includes P(y—x) (which means probability of y given x) . So when there are multiple features then Naive 

Bayes classifier assumes that all features are independent of each other which does not hold true while dealing with real world 

problems . Therefore , if binary classification is considered , then it is generally observed that logistic regression gives better 

results as compared to Naive bayes classifier . 

3. Model assumptions. 

Naive Bayes assumes all the features are different from each other.It is dependent upon each other alot hence accuracy is less. 

Logistic regression splits it linearly, hence it is important to watch the accuracy according to it. 

4. Way to deal with be followed to improve model outcomes. 

Naive Bayes: When the preparation information size is a bit unequal with the data and information on earlier probabilities 

help in improving the outcomes. 

Logistic regression: When the training data size is small compared to various features which is already supported with it. 

 

 

 
4.2 Results 

The data shown in Figure 2 of movie reviews was taken from [14] and was implemented in Spyder IDE using python. 

This data was trained and tested in two machine learning classification models, i.e., Logistic Regression and Naive Bayes for 

linearly classifying whether the review is positive or negative. 80% of data was trained and rest 20% was tested to check whether 

the model was accurate or not. A model is said to be accurate if the output of the model matches with the given sentiment, where ’0’ 

means positive and ’1’ means negative. Hence, accuracy score was calculated for both the ML models respectively. The obtained 

results are shown in and Figure 3 and Figure 4. 

From the results shown in the figures we see that Logistic Regression classification for movie-reviews has achieved the score on 

training data as 93.59% and on testing data as 89.76%. The classification accuracy score with Naive Bayes show the training data 

score as 90.6% and testing data score as 86.14%. The findings indicate that Logistic Regression classification for movie-reviews 

has achieved higher classification accuracy score as compared to Naive Bayes, as the linearly separable and the classification task 

in this case is binary, i.e. positive or negative. Therefore, logistic regression is found to be more efficient and accurate as compared 

to Naive Bayes classification algorithm. 
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Figure 2: Data for comparison of the two ML algorithms 

 

                                                    

     

                                                            Figure 3: Accuracy score with logistic regression 

 

Figure 4: Accuracy score with Naive Bayes 

 

 

 

5 CONCLUSION 

In this paper we have reviewed different standardization methods for Natural Language Processing its importance and implementa- 

tion in python using its NLTK library. This standardization methods are used for normalization of text which can also be called as 

data preprocessing before feeding it into the machine learning models for its linear classification. 

Comparison of Logistic Regression and Naive Bayes models for linear classification also have been discussed and implemented 

for a given dataset of movie-reviews. After a brief comparison, it turned out that Logistic Regression model was more accurate than 

Naive Bayes model for the given movie-reviews dataset. 
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