
Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9494 www.ijariie.com 666

Sequential Moore-Penrose Inverse Based

Extreme Learning Machine with Growth of

Hidden Nodes

Randriamamonjy Liantsoa Joharinirina
1
, Randimbindrainibe Falimanana

2
,

 Robinson Matio
3

1
Randriamamonjy Liantsoa Joharinirina, Student in Doctoral School of Science and Technical of

Engineering and Innovation, Laboratory of Cognitives Sciences and Applications, University of

Antananarivo, Madagascar

2
 Randimbindrainibe Falimanana, Professor in Doctoral School of Science and Technical of Engineering

and Innovation, Laboratory of Cognitives Sciences and Applications, University of Antananarivo,

Madagascar

3
 Robinson Matio, Doctor in Doctoral School of Science and Technical of Engineering and Innovation,

Laboratory of Cognitives Sciences and Applications, University of Antananarivo, Madagascar

ABSTRACT

 One of the open problems in neural network research is how to automatically determine network architectures

for given application. The extreme learning machine (ELM) have been proposed for generalized single-hidden-layer

feedforward networks (SLFNs) which perform well in both regression and classification application. In this paper,

an error-minimized incremental algorithm based on Sequential Moore-Penrose Inverse is proposed, to

automatically determine the number of hidden nodes in SLFNs. This approach, Sequential Moore-Penrose inverse

based ELM (SMP-ELM), is able to add random hidden nodes to SLFNs one by one or group by group. During the

growth of the networks, the output weights are updated incrementally. Simulation results demonstrate and verify

that our new approach can achieve more compact network structure with better generalization performance.

Keyword: - Extreme learning machine (ELM), Growing algorithm, Incremental learning, Moore-Penrose

Generalized Inverse, Sequential learning, minimizing error.

1. Introduction

 In the field of artificial neural networks, radial basis function (RBF) neural network and multilayer perceptron

with one hidden layer have been regarded as a most remarkable single-hidden layer feedforward networks (SLFNs).

In view of the fact that standard SLFNs with N hidden nodes can exactly learn N distinct observation, Tamura and

Tateishi [1] proved that a SLFNs with N sigmoid hidden units can give any N input-target relation exactly. The

capabilities of SLFNs to approximate complex nonlinear mapping directly from the input samples have been widely

investigated due to their applications in various areas of scientific research and engineering [2]. Different from the

conventional neural network theories where the parameters of SLFNs are well adjusted. Huang and al [3] [4]

proposed extreme learning machine (ELM) where the hidden nodes of SLFNs need not be tuned. ELM has been

successfully applied in many applications and have been shown to be an extremely fast learning algorithm and

having good generalization performance. However, since ELM use batch learning scheme, the only factor that needs

to be set by users is the size of the SLFNs (number of hidden nodes) before learning. Therefore, how to choose the

optimal number of hidden nodes of ELM is the main objective of this paper.

 This paper proposes a novel incremental extreme learning machine with sequential Moore-Penrose Inverse

growth of hidden nodes and incremental updating of output weights using error-minimized based method (EM-

ELM) proposed in [5] that can grow hidden nodes one by one or group by group.

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9494 www.ijariie.com 667

 The rest of this paper is organized as follows. Section 2 gives a brief review of ELM. The proposed algorithm

is introduced in Section 3. Experimental results and discussion are shown in Section 4. Finally, conclusion are

given in Section 5.

2. Brief review on ELM

 This section will briefly reviews the ELM proposed by Huang, et al [3]. One key principle of the ELM is that

one may randomly choose and fix the hidden node parameters. After the hidden node parameters are chosen

randomly, SLFN becomes a linear system where the output weights of the network can be analytically determined

using simple generalized inverse operation of the hidden layer output matrix.

 For 𝑁 arbitrary distinct samples(𝑥𝑖 , 𝑡𝑖), where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]𝑇 ∈ ℝ𝑛 and 𝑡𝑖 = [𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑚]𝑇 ∈ ℝ𝑚

standard SLFNs can approximate these 𝑁 samples with zero error means that there exist 𝛽𝑖 , 𝜔𝑖 and 𝑏𝑖 such that

∑𝛽𝑖 𝑔(𝜔𝑖. 𝑥𝑗 + 𝑏𝑖) = 𝑡𝑗 , 𝑗 = 1,… ,𝑁

𝑁

𝑖=1

 (1)

where 𝜔𝑖 = [𝜔𝑖1, 𝜔𝑖2 , … , 𝜔𝑖𝑛]𝑇 is the weight vector connecting the ith hidden neuron and the input neurons,

𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑚]𝑇 is the weight vector connecting the ith hidden neuron and the output neurons, and 𝑏𝑖 is the

threshold of the ith hidden neuron, 𝜔𝑖 . 𝑥𝑗 denotes the inner product of 𝜔𝑖 and 𝑥𝑗. The output neuron are chosen linear

in this paper.

 The above 𝑁 equations can be written compactly as:

 H𝛽 = T (2)

where

𝐇(𝜔1, … , 𝜔𝑀, 𝑏1, … , 𝑏𝑀 , 𝑥1, … , 𝑥𝑁) = [
𝑔(𝜔1. 𝑥1 + 𝑏1) ⋯ 𝑔(𝜔𝐿 . 𝑥1 + 𝑏𝐿)

⋮ ⋱ ⋮
𝑔(𝜔1. 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝜔𝐿 . 𝑥𝑁 + 𝑏𝐿)

]

𝑁×𝐿

 (3)

𝛽 = [
𝛽1

𝑇

⋮
𝛽𝐿

𝑇
]

𝐿×𝑚

 𝑎𝑛𝑑 𝐓 = [
𝑡1
𝑇

⋮
𝑡𝑁
𝑇
]

𝑁×𝑚

 (4)

H is called the hidden layer output matrix of the neural network; the ith column of H is the ith hidden neuron’s

output vector with respect to input 𝑥1, 𝑥2, … , 𝑥𝑁.

 Similar to SLFNs with additive neurons, for SLFNs with RBF kernel function 𝜙(
‖𝑥−𝜇‖

𝜎
) we have

𝐇𝛽 = 𝐓 (5)

where H is the hidden layer output matrix of the RBF network;

𝐇(μ1, … , 𝜇𝐿 , 𝜎1, … , 𝜎𝐿, 𝑥1, … , 𝑥𝑁) =

[

 𝜙 (

‖𝑥1−𝜇1‖

𝜎1
) ⋯ 𝜙 (

‖𝑥1−𝜇𝐿‖

𝜎𝐿
)

⋮ ⋱ ⋮

𝜙 (
‖𝑥𝑁−𝜇1‖

𝜎1
) ⋯ 𝜙 (

‖𝑥𝑁−𝜇𝐿‖

𝜎𝐿
)]

 (6)

the ith column of H is the output of the ith kernel with respect to inputs 𝑥1, 𝑥2, … , 𝑥𝑁.

 Usually, when the number of training data is larger than the number of hidden nodes 𝑁 > 𝐿 , one cannot

expect an exact solution of the system (5). Fortunately, since it has been proved in theory [6] that SLFNs with

random hidden nodes have the universal approximation capability, the hidden nodes can be randomly generated

independent of the training data. It is proved that SLFNs’ input weights 𝜔𝑖 and hidden neurons’ biases 𝑏𝑖 or centers

and impact of RBF kernels need not be adjusted during training and one may simply randomly assign values to then.

In batch ELM, the input weights and hidden biases are randomly assigned and the output weights 𝛽 are estimated as:

𝛽̂ = 𝐇†𝐓 (7)

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9494 www.ijariie.com 668

where 𝐇† is the Moore-Penrose generalized inverse (pseudo-inverse) [7], [8] of the hidden layer output matrix H.

The three-step simple learning algorithm [3], [9], [10] can be summarized as follow:

 Algorithm ELM: Given a training set {(𝑥𝑖 , 𝑡𝑖)}𝑖=1
𝑁 ⊂ ℝ𝑛 × ℝ𝑚, activation function g or kernel function 𝜙, and

hidden neuron or kernel number L:

1) randomly assigned hidden node parameters (𝜔𝑖,𝑏𝑖) or (𝜇𝑖, 𝜎𝑖), 𝑖 = 1,… , 𝐿

2) calculate the hidden-layer output matrix H

3) estimate the output weight 𝛽 : 𝛽̂ = 𝐇† 𝐓 .

 As an important conclusion in the theory of ELM, interpolation theorem, presented in [4], Lemma 1,

demonstrate that for a SLFNs with N hidden nodes can learn N distinct training samples with zero error. It also

indicates that columns of the hidden matrix H satisfy column full rank when the number N of training samples is

greater than the number L of hidden nodes, with probability one.

 Lemma 1: Given a SLFNs with N hidden nodes and any activation function 𝑔: ℝ → ℝ, which is infinitely

differentiable in any interval, for N arbitrary distinct samples (𝑥𝑖 , 𝑡𝑖), where 𝑥𝑖 ∈ ℝ𝑛 and 𝑡𝑖 ∈ ℝ𝑚, for any 𝑎𝑖 and 𝑏𝑖

randomly chosen from any intervals of ℝ𝑛 and ℝ, respectively, according to any continuous probability

distribution , then with probability one, the hidden matrix H is invertible, and ‖𝐻𝛽 − 𝑇‖ = 0.

3. Growing Hidden Nodes using Sequential Moore-Penrose Inverse

3.1 Sequential Moore-Penrose Inverse

 The procedure essentially provides a method for constructing the Moore-Penrose inverse of any columnwise

partitioned matrix with the form 𝐴 = [𝐴1: 𝐴2] where 𝐴 has 𝑛 column, 𝐴1 and 𝐴2 has 𝑛1, 𝑛2 column respectively,

and 𝑛 = 𝑛1 + 𝑛2.

 Greville’s method [13] gives the Moore-Penrose inverse of any matrix with k columns, given the Moore-

Penrose inverse of the sub matrix consisting of the first k − 1 columns is known. For any 𝑘 ≥ 2 , let 𝐴𝑘 denote the

matrix with 𝑘 columns, 𝑎1, … , 𝑎𝑘 . Then 𝐴𝑘 can be written as a partitioned form as 𝐴𝑘 = [𝐴𝑘−1, 𝑎𝑘]. Assuming 𝐴𝑘−1
†

is known, 𝐴𝑘 can be formed using the following formulas:

let

𝐶𝑘 = (𝐼 − 𝐴𝑘−1𝐴𝑘−1
†)𝑎𝑘 (8)

and let

𝐷𝑘 = 𝑎𝑘
𝑇(𝐴𝑘−1

𝑇)† 𝐴𝑘−1
† 𝑎𝑘 (9)

Then

𝐴𝑘
† = [

𝐴𝑘−1
† − 𝐴𝑘−1

† 𝑎𝑘 𝐵𝑘

𝐵𝑘

] (10)

 where

𝐵𝑘 = {
𝐶𝑘

† , 𝑖𝑓 𝐶𝑘 ≠ 0

(𝐼 + 𝐷𝑘)
−1𝑎𝑘

𝑇(𝐴𝑘−1
𝑇)†𝐴𝑘−1

† , 𝑖𝑓 𝐶𝑘 = 0
 (11)

We extend this approach to any columnwise partitioned matrix as mentioned above. In [14, Theorem 1 & 2], two

version of the general formula for Moore-Penrose inverse of matrix A partitioned as 𝐴 = [𝐴1: 𝐴2], have been

given. These results can be summarized as:

 Let A = [A1: A2] ∈ ℝm,n and let Pi ∈ ℝm,m and Qi ∈ ℝm,m be the orthogonal projectors specified as:

Pi = AiAi
†
 et Qi = Im − Pi , i = 1,2. then

𝐴† = (
(𝑄2𝐴1)

†

(𝑄1𝐴2)
†
) = (

𝐴1
† − 𝐴1

†𝐴2(𝑄1𝐴2)
†

𝐴2
† − 𝐴2

†𝐴1(𝑄1𝐴1)
†
) (12)

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9494 www.ijariie.com 669

if and only ℛ(𝐴1) ∩ ℛ(𝐴2) = {0} .

3.2 Proposed method for growing hidden nodes

 Given a SLFNs with 𝐿0 hidden nodes {(𝑎𝑖 , 𝑏𝑖)}𝑖=1
𝐿0 , the hidden layer output matrix of this SLFNs is 𝐇𝟏 =

(𝑎1, … , 𝑎𝐿0
, 𝑏1, … , 𝑏𝐿0

, 𝑥1, … , 𝑥𝑁) . If the network output error 𝐸(𝐇𝟏) is less than the target error 𝜀 > 0, no new

hidden nodes will be added and the learning procedure completes. Otherwise, we can add new hidden node 𝛿𝐿0 to

the existing SLFNs and we have the new hidden layer output matrix 𝐇𝟐 = [𝐇𝟏, 𝛅𝐇𝟏]. According to the Lemma 1,

the pseudo-inverse of 𝐇𝟐 is obtained by using the sequential method propose in (10) and (12). Thus we can obtain a

fast incremental output weight updating method for the SLFNs with the mechanism of growing hidden nodes.

 Proposed algorithm: Given a set of training data {(𝑥𝑖 , 𝑡𝑖)}𝑖=1
𝑁 , the maximum number of hidden nodes 𝐿𝑚𝑎𝑥,

and the expected learning accuracy 𝜖 > 0 , the proposed algorithm can be shown in two phases.

 Initialization:

1) Initialize the SLFNs with a small randomly generated hidden nodes (𝑎𝑖 , 𝑏𝑖)𝑖=1
𝐿0 where 𝐿0 is a small positive

integer given by users.

2) Calculate the hidden-layer output matrix 𝐇𝟏

𝐇𝟏 = [

𝑔(𝑎1, 𝑏1, 𝑥1) ⋯ 𝑔(𝑎𝐿0
, 𝑏𝐿0

, 𝑥1)

⋮ ⋱ ⋮
𝑔(𝑎1, 𝑏1, 𝑥𝑁) ⋯ 𝑔(𝑎𝐿0

, 𝑏𝐿0
, 𝑥𝑁)

]

𝑁×𝐿0

 (13)

3) Calculate the output error 𝐸(𝐇𝟏) = ‖𝐇𝟏𝐇𝟏
†𝐓 − 𝐓‖. (14)

 Sequential growing hidden nodes: Let k=0,

 While 𝐿𝑘 < 𝐿𝑚𝑎𝑥 and 𝐸(𝐇𝐤) > 𝜀 :

1) 𝑘 = 𝑘 + 1

2) Randomly add new hidden node 𝛿𝐿𝑘 to the existing SLFNs. The total number of hidden nodes becomes

𝐿𝑘 = 𝐿𝑘−1 + 𝛿𝐿𝑘 and the corresponding hidden-layer output matrix 𝐇𝐤+𝟏 = [𝐇𝐤, 𝛅𝐇𝐤], where

𝛅𝐇𝐤 = [

𝑔(𝑎𝐿𝑘
, 𝑏𝐿𝑘

, 𝑥1)

⋮
𝑔(𝑎𝐿𝑘

, 𝑏𝐿𝑘
, 𝑥𝑁)

] (15)

3) The output weights 𝛽 are updated in a way as:

𝐶𝑘 = (𝐼 − 𝛅𝐇𝐤𝜹𝐇𝐤
†)𝐇𝐤 (16)

𝛽𝑘+1 = 𝐇𝐤+𝟏
† 𝐓 = [

 𝐶𝑘

𝛅𝐇𝐤−𝟏
† − 𝛅𝐇𝐤−𝟏

† 𝐇𝐤𝐶𝑘
] T. (17)

 End While.

The number of new hidden nodes to be added need be kept constant, i.e., the algorithm allows 𝛿𝐿𝑘 = 𝛿𝐿𝑘+1. It is of

interest that, the convergence of the proposed algorithm is given in [5].

4. Experimental verification of performance

In this section, we investigate the performance of the proposed algorithm in some real-world benchmark regression

and classification data sets [12] (cf. Table-1). All the simulations are carried out in Matlab R2013a environment

running on a desktop PC dual core, 2,4 GHZ CPU with 2 GB RAM. The performance of our method has been

compared with the sequential/incremental/growing algorithm error-minimized extreme learning machine with

growth hidden nodes and incremental learning (EM-ELM) [5]. The sigmoid function 𝑔(𝑥) = 1/(1 + exp (−𝑥)) is

used as an activation function for all methods.

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9494 www.ijariie.com 670

 In our experiments, all inputs (attributes) have been normalized into the range [-1, 1] while the outputs

(targets) have been normalized into [0, 1]. The average results are obtained over 20 trials for all cases. For each trail

of simulations, the datasets of the application was divided into training and testing datasets with the number of

samples indicated in Table-1.

Table-1: Specification of Benchmark Data Sets

Datasets Attributes Classes Types #Training

Data

#Testing

Data

Machine CPU 8 - Regression 100 109

Boston Housing 14 - Regression 250 256

SinC 1 - Regression 1000 1000

Diabetes 8 2 Classification 576 192

Segment 19 7 Classification 1100 1110

Satimage 36 7 Classification 3217 3218

Fig-1: Average testing RMSE in SinC case.

Fig-2: Average training time in SinC case.

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9494 www.ijariie.com 671

SMP-ELM and EM-ELM have first been compared in benchmark problem: SinC function. One thousand training

and testing data have been randomly generated from the interval [-10, 10] with a uniform distribution. Both

algorithm increases the hidden nodes one by one along all experiments.

 Fig-1 shows the testing root mean square error (RMSE) obtained by SMP-ELM and EM-ELM methods. We

can observe that the testing RMSE of SMP-ELM is comparable with that of EM-ELM. It can be seen that SMP-

ELM can obtain better generalization performance than EM-ELM. Fig-2 shows the computational complexity

comparisons of the two methods. We can show that our method for growing hidden nodes is much faster than EM-

ELM.

 Further comparison has been conducted in some real benchmark regression and classification problems shown

in Table-1. With the same expected accuracy (or the same maximum step), the network structure and the

generalization performance obtained by both SMP-ELM and EM-ELM are compared. The stopping RMSE and

maximum step for all datasets cases are presented in Table-2.a and Table-2.b.The apparent better results are shown

in boldface. As compared to EM-ELM, SMP-ELM always has lower network structure with less testing RMSE in

most cases. The testing standard deviation (STD dev.) of SMP-ELM is better or comparable with EM-ELM, which

proved the stability of our approach.

 Table-3 give performance results of SMP-ELM by adding hidden nodes one by one or group by group. As

observe from the results, adding hidden nodes group by group can speed up the training time of the method and the

generalization performance is increased. Furthermore, in view of network structure, growing hidden nodes one by

one allow to obtain lower number of hidden nodes.

Table-2.a: Performance comparison between SMP-ELM and EM-ELM (Regression)

Regression

Datasets

Stop

RMSE

Max

Steps

Algorithms Training

time (s)

Testing

RMSE

Testing

Dev.

Nodes Nodes

Dev.

Machine

CPU

0.06 20 EM-ELM 0.0172 0.0758 0.0313 13.95 5.3947

0.06 20 SMP-ELM 0.0140 0.0687 0.0213 13.1 5.6186

Boston

housing

0,13 200 EM-ELM 0,0289 0,1293 0,0109 13.05 4.861

0,13 200 SMP-ELM 0,0156 0,1266 0,031 11.9 3.2428

Abalone

0.1 200 EM-ELM 1.8229 0.0993 0.009 8.7 6.13

0.1 200 SMP-ELM 0.8588 0.0989 0.0062 8.3 5.526

Table-2.b: Performance comparison between SMP-ELM and EM-ELM (Classification)

Classification

Datasets

Stop

Accuracy

Max

Steps

Algorithms Training

time (s)

Testing

Accuracy

Testing

Dev.

Nodes Nodes

Dev.

Diabetes

0.8 25 EM-ELM 0.5070 0.7737 0.0331 20 8.0263

0.8 25 SMP-ELM 0.2675 0.7828 0.0272 19.6 7.6667

Segment

0.9 50 EM-ELM 0.8221 0.8155 0.0109 11.25 1.9160

0.9 50 SMP-ELM 0.617 0.8141 0.0107 9.7 1.3803

Satimage

0.8 50 EM-ELM 8,8498 0.8025 0.0016 16.10 2.9231

0.8 50 SMP-ELM 4.5505 0.8035 0.0037 16.6 3.0258

Datasets #Nodes

added

Training

time(s)

Testing

Accuracy

#Nodes

Diabetes

1-by-1 0.1903 0.76 15.1

3-by-3 0.071 0.7656 16

5-by-5 0.0491 0.7573 17.75

 1-by-1 0.741 0.8152 10.4

Vol-5 Issue-1 2019 IJARIIE-ISSN(O)-2395-4396

9494 www.ijariie.com 672

Table-3: Performance of SMP-ELM with hidden nodes added (one by one or group by group)

5. Conclusion

 In this paper, we have propose an extreme learning machine with sequential Moore-Penrose Inverse (SMP-

ELM) growth of hidden nodes and incremental updating of output weights using an error-minimized-based method

to automatically determine the hidden nodes number in generalized SLFNs. Our approach allows the random hidden

nodes to be added one by one or group by group assuming that the generalized inverse of the existing hidden nodes

is known. The output weights are then updated incrementally during the growth of the networks. The simulation

results on real and artificial benchmark problems show that the new approach can achieve more compact network

architecture with good generalization performance than EM-ELM. Results on growing hidden nodes group by group

show that our approach can significantly reduce the computation complexity of incremental ELM. The performance

of our method on other type of function (geninv, qrgeninv, ginv) for computing Moore-Penrose inverse matrices will

be reported in the future work.

6. References

[1]. S.Tamura and M. Tateishi, “Capabilities of a four-layered feedforward neural network: Four layers versus

three,” IEEE Transaction on Neural Network, vol.8, no. 3, 251-255, 1997

[2]. Bishop, C.M, “Neural network for pattern recognition”. Oxford University Press, New York 1995

[3]. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme Learning Machine: A new learning scheme of feedforward

neural networks”, in Proceedings of International Joint Conference on Neural Networks (IJCNN 2004), (Budapest,

Hungary), 25-29 July, 2004

[4]. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications”,

Neurocomputing, vol. 70, 489-501, 2006

[5]. G. Feng, G.-B. Huang, Q. Lin and R.Gay, “Error Minimized Extreme Learning Machine with growth of hidden

nodes and incremental learning”, IEEE Transactions on Neural Networks, vol.20, No.8, august 2009

[6]. G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using incremental constructive networks”,

revised and resubmitted to IEEE Transactions on Neural Networks, 2005

[7]. D. Serre, Matrices: Theory and Applications, New York: Springer-Verlag, 2002

[8]. C.-R. Ras and S.-K. Mitra, Generalized inverse of matrices and its applications, New York: Wiley, 1971

[9]. G.-B. Huang, C.-K. Siew, “Extreme Learning Machine: RBF network case”, in Proceedings of the Eighth

International Conference on Control, Automation, Robotics and Vision (ICARCV 2004), (Kunming China), 6-9 Dec,

2004

[10]. G.-B. Huang, C.-K. Siew, “Extreme Learning Machine with randomly assigned RBF kernels”, International

Journal of Information Technology, vol.11, no.1, 2005

[11]. Randall E. Cline, Elements of the theory of generalized inverses for matrices, Mathematics Department

University of Tennessee, 1979

[12]. Black, C.L., Merz, and C.J.: “UCI repository of machine learning databases”, Department of Information and

Computer Sciences, University of California, Irvine, USA (1998),http://www.ics.uci.edu/~mlearn/mlrepository.html

[13]. T.N.E. Greville, “Some applications of the pseudoinverse of a matrix,” SIAM Review, vol.2, no.1, 15-22, 1960.

Segment 3-by-3 0.2668 0.8286 11.3

5-by-5 0.1825 0.8425 12

Satimage

1-by-1 5.2557 0.7946 17.2

3-by-3 1.7519 0.7979 17

5-by-5 1.0483 0.8068 17.5

http://www.ics.uci.edu/~mlearn/mlrepository.html

