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ABSTRACT 
 

      One of the open problems in neural network research is how to automatically determine network architectures 

for given application. The extreme learning machine (ELM) have been proposed for generalized single-hidden-layer 

feedforward networks (SLFNs) which perform well in both regression and classification application. In this paper, 

an error-minimized incremental algorithm based on Sequential Moore-Penrose Inverse is proposed, to 

automatically determine the number of hidden nodes in SLFNs. This approach, Sequential Moore-Penrose inverse 

based ELM (SMP-ELM), is able to add random hidden nodes to SLFNs one by one or group by group. During the 

growth of the networks, the output weights are updated incrementally. Simulation results demonstrate and verify 

that our new approach can achieve more compact network structure with better generalization performance. 

 

Keyword: - Extreme learning machine (ELM), Growing algorithm, Incremental learning, Moore-Penrose 

Generalized Inverse, Sequential learning, minimizing error. 

 
1. Introduction 

         In the field of artificial neural networks, radial basis function (RBF) neural network and multilayer perceptron 

with one hidden layer have been regarded as a most remarkable single-hidden layer feedforward networks (SLFNs). 

In view of the fact that standard SLFNs with N hidden nodes can exactly learn N distinct observation, Tamura and 

Tateishi [1] proved that a SLFNs with N sigmoid hidden units can give any N input-target relation exactly. The 

capabilities of SLFNs to approximate complex nonlinear mapping directly from the input samples have been widely 

investigated due to their applications in various areas of scientific research and engineering [2]. Different from the 

conventional neural network theories where the parameters of SLFNs are well adjusted. Huang and al [3] [4] 

proposed extreme learning machine (ELM) where the hidden nodes of SLFNs need not be tuned. ELM has been 

successfully applied in many applications and have been shown to be an extremely fast learning algorithm and 

having good generalization performance. However, since ELM use batch learning scheme, the only factor that needs 

to be set by users is the size of the SLFNs (number of hidden nodes) before learning. Therefore, how to choose the 

optimal number of hidden nodes of ELM is the main objective of this paper. 

         This paper proposes a novel incremental extreme learning machine with sequential Moore-Penrose Inverse 

growth of hidden nodes and incremental updating of output weights using error-minimized based method (EM-

ELM) proposed in [5] that can grow hidden nodes one by one or group by group. 
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         The rest of this paper is organized as follows. Section 2 gives a brief review of ELM. The proposed algorithm 

is introduced in Section 3. Experimental results and discussion are shown  in Section 4. Finally, conclusion are 

given in Section 5. 

 

2. Brief review on ELM 
 

          This section will briefly reviews the ELM proposed by Huang, et al [3]. One key principle of the ELM is that 

one may randomly choose and fix the hidden node parameters. After the hidden node parameters are chosen 

randomly, SLFN becomes a linear system where the output weights of the network can be analytically determined 

using simple generalized inverse operation of the hidden layer output matrix. 

          For 𝑁 arbitrary distinct samples(𝑥𝑖 , 𝑡𝑖), where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]𝑇 ∈  ℝ𝑛 and 𝑡𝑖 = [𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑚]𝑇 ∈  ℝ𝑚 

standard SLFNs can approximate these 𝑁 samples with zero error means that there exist 𝛽𝑖 , 𝜔𝑖  and 𝑏𝑖 such that  

 

∑𝛽𝑖 𝑔(𝜔𝑖. 𝑥𝑗 + 𝑏𝑖) = 𝑡𝑗 , 𝑗 = 1,… ,𝑁 

𝑁

𝑖=1

                                                  (1) 

 
where  𝜔𝑖 = [𝜔𝑖1, 𝜔𝑖2 , … , 𝜔𝑖𝑛]𝑇 is the weight vector connecting the ith hidden neuron and the input neurons, 

𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑚]𝑇 is the weight vector connecting the ith hidden neuron and the output neurons, and 𝑏𝑖 is the 

threshold of the ith hidden neuron, 𝜔𝑖 . 𝑥𝑗 denotes the inner product of 𝜔𝑖 and 𝑥𝑗. The output neuron are chosen linear 

in this paper. 

          The above 𝑁 equations can be written compactly as: 

 

                                  H𝛽 = T                                                                            (2) 
 

where   

𝐇(𝜔1, … , 𝜔𝑀, 𝑏1, … , 𝑏𝑀 , 𝑥1, … , 𝑥𝑁) =  [
𝑔(𝜔1. 𝑥1 + 𝑏1) ⋯ 𝑔(𝜔𝐿 . 𝑥1 + 𝑏𝐿)

⋮ ⋱ ⋮
𝑔(𝜔1. 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝜔𝐿 . 𝑥𝑁 + 𝑏𝐿)

]

𝑁×𝐿

       (3) 

 

 

𝛽 = [
𝛽1

𝑇

⋮
𝛽𝐿

𝑇
]

𝐿×𝑚

 𝑎𝑛𝑑      𝐓 =  [
𝑡1
𝑇

⋮
𝑡𝑁
𝑇
]

𝑁×𝑚

                                                (4) 

 

H is called the hidden layer output matrix of the neural network; the ith column of H is the ith hidden neuron’s 

output vector with respect to input 𝑥1, 𝑥2, … , 𝑥𝑁.  

       Similar to SLFNs with additive neurons, for SLFNs with RBF kernel function 𝜙(
‖𝑥−𝜇‖

𝜎
) we have  

 

𝐇𝛽 = 𝐓                                                                                    (5) 
 

where H is the hidden layer output matrix of the RBF network; 

𝐇(μ1, … , 𝜇𝐿 , 𝜎1, … , 𝜎𝐿, 𝑥1, … , 𝑥𝑁) =  

[
 
 
 𝜙 (

‖𝑥1−𝜇1‖

𝜎1
) ⋯ 𝜙 (

‖𝑥1−𝜇𝐿‖

𝜎𝐿
)

⋮ ⋱ ⋮

𝜙 (
‖𝑥𝑁−𝜇1‖

𝜎1
) ⋯ 𝜙 (

‖𝑥𝑁−𝜇𝐿‖

𝜎𝐿
)]
 
 
 

                         (6)              

 

the ith column of H is the output of the ith kernel with respect to inputs 𝑥1, 𝑥2, … , 𝑥𝑁. 

           Usually, when the number of training data is larger than the number of hidden nodes 𝑁 > 𝐿 , one cannot 

expect an exact solution of the system (5). Fortunately, since it has been proved in theory [6] that SLFNs with 

random hidden nodes have the universal approximation capability, the hidden nodes can be randomly generated 

independent of the training data. It is proved that SLFNs’ input weights 𝜔𝑖 and hidden neurons’ biases 𝑏𝑖  or centers 

and impact of RBF kernels need not be adjusted during training and one may simply randomly assign values to then. 

In batch ELM, the input weights and hidden biases are randomly assigned and the output weights 𝛽 are estimated as: 

𝛽̂ = 𝐇†𝐓                                                                             (7) 
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where 𝐇† is the Moore-Penrose generalized inverse (pseudo-inverse) [7], [8] of the hidden layer output matrix H.  

The three-step simple learning algorithm [3], [9], [10] can be summarized as follow: 

 Algorithm ELM: Given a training set {(𝑥𝑖 , 𝑡𝑖)}𝑖=1
𝑁 ⊂ ℝ𝑛  ×  ℝ𝑚, activation function g or kernel function 𝜙, and 

hidden neuron or kernel number L: 

1) randomly assigned hidden node parameters (𝜔𝑖,𝑏𝑖 ) or (𝜇𝑖, 𝜎𝑖), 𝑖 = 1,… , 𝐿 

2) calculate the hidden-layer output matrix H 

3) estimate the output weight 𝛽 : 𝛽̂ = 𝐇† 𝐓 . 

        As an important conclusion in the theory of ELM, interpolation theorem, presented in [4], Lemma 1, 

demonstrate that for a SLFNs with N hidden nodes can learn N distinct training samples with zero error. It also 

indicates that columns of the hidden matrix H satisfy column full rank when the number N of training  samples is 

greater  than the number L of hidden nodes, with probability one.  

        Lemma 1: Given a SLFNs with N hidden nodes and any activation function 𝑔: ℝ → ℝ, which is infinitely 

differentiable in any interval, for N arbitrary distinct samples (𝑥𝑖 , 𝑡𝑖), where 𝑥𝑖 ∈ ℝ𝑛 and 𝑡𝑖 ∈ ℝ𝑚, for any 𝑎𝑖 and 𝑏𝑖 

randomly chosen from any intervals of  ℝ𝑛 and ℝ, respectively, according to any continuous probability 

distribution , then with probability one, the hidden matrix H is invertible, and ‖𝐻𝛽 − 𝑇‖ = 0. 

 

3. Growing Hidden Nodes using Sequential Moore-Penrose Inverse 

3.1 Sequential Moore-Penrose Inverse 

         The procedure essentially provides a method for constructing the Moore-Penrose inverse of any columnwise 

partitioned matrix with the form 𝐴 = [𝐴1: 𝐴2] where  𝐴 has 𝑛 column, 𝐴1 and 𝐴2 has 𝑛1, 𝑛2 column respectively, 

and 𝑛 = 𝑛1 + 𝑛2.  

         Greville’s method [13] gives the Moore-Penrose inverse of any matrix with k columns, given the Moore-

Penrose inverse of the sub matrix consisting of the first k − 1 columns is known. For any 𝑘 ≥ 2 , let 𝐴𝑘 denote the 

matrix with 𝑘 columns, 𝑎1, … , 𝑎𝑘 . Then  𝐴𝑘 can be written as a partitioned form as 𝐴𝑘 = [𝐴𝑘−1, 𝑎𝑘]. Assuming 𝐴𝑘−1
†

 

is known, 𝐴𝑘  can be formed using the following formulas:  

let  

𝐶𝑘 = (𝐼 − 𝐴𝑘−1𝐴𝑘−1
† )𝑎𝑘                                                                     (8) 

and let 

𝐷𝑘 = 𝑎𝑘
𝑇(𝐴𝑘−1

𝑇 )† 𝐴𝑘−1
†  𝑎𝑘                                                                    (9) 

Then 

𝐴𝑘
† = [

𝐴𝑘−1
† − 𝐴𝑘−1

†  𝑎𝑘 𝐵𝑘

𝐵𝑘

]                                                                 (10) 

 

 where          

𝐵𝑘 = {
𝐶𝑘

† ,   𝑖𝑓 𝐶𝑘 ≠ 0

(𝐼 + 𝐷𝑘)
−1𝑎𝑘

𝑇(𝐴𝑘−1
𝑇 )†𝐴𝑘−1

†  ,   𝑖𝑓 𝐶𝑘 = 0
                                            (11)  

We extend this approach to any columnwise partitioned matrix as mentioned above. In [14, Theorem 1 & 2], two 

version of the general formula for Moore-Penrose inverse of matrix A partitioned as 𝐴 = [𝐴1: 𝐴2],   have been 

given. These results can be summarized as: 

         Let A = [A1: A2] ∈  ℝm,n  and let Pi ∈  ℝm,m  and Qi ∈ ℝm,m be the orthogonal projectors specified as: 

Pi = AiAi
†
 et Qi = Im − Pi , i = 1,2. then  

𝐴† = (
(𝑄2𝐴1)

†

(𝑄1𝐴2)
†
) = (

𝐴1
† − 𝐴1

†𝐴2(𝑄1𝐴2)
†

𝐴2
† − 𝐴2

†𝐴1(𝑄1𝐴1)
†
)                                                       (12) 
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if and only ℛ(𝐴1) ∩ ℛ(𝐴2) = {0} . 

3.2 Proposed method for growing hidden nodes 

 

         Given a SLFNs with 𝐿0 hidden nodes {(𝑎𝑖 , 𝑏𝑖)}𝑖=1
𝐿0 , the hidden layer output matrix of this SLFNs is   𝐇𝟏 =

(𝑎1, … , 𝑎𝐿0
, 𝑏1, … , 𝑏𝐿0

, 𝑥1, … , 𝑥𝑁) . If the network output error 𝐸(𝐇𝟏) is less than the target error 𝜀 > 0, no new 

hidden nodes will be added and the learning procedure completes. Otherwise, we can add new hidden node 𝛿𝐿0 to 

the existing SLFNs and we have the new hidden layer output matrix 𝐇𝟐 = [𝐇𝟏, 𝛅𝐇𝟏]. According to the Lemma 1, 

the pseudo-inverse of 𝐇𝟐 is obtained by using the sequential method propose in (10) and (12). Thus we can obtain a 

fast incremental output weight updating method for the SLFNs with the mechanism of growing hidden nodes. 

 

           Proposed algorithm: Given a set of training data {(𝑥𝑖 , 𝑡𝑖)}𝑖=1
𝑁 , the maximum number of hidden nodes 𝐿𝑚𝑎𝑥, 

and the expected learning accuracy 𝜖 > 0 , the proposed algorithm can be shown in two phases. 

                    Initialization: 

1) Initialize the SLFNs with a small randomly generated hidden nodes (𝑎𝑖 , 𝑏𝑖)𝑖=1
𝐿0  where 𝐿0 is a small positive 

integer given by users. 

2) Calculate the hidden-layer output matrix 𝐇𝟏   

𝐇𝟏 = [

𝑔(𝑎1, 𝑏1, 𝑥1) ⋯ 𝑔(𝑎𝐿0
, 𝑏𝐿0

, 𝑥1)

⋮ ⋱ ⋮
𝑔(𝑎1, 𝑏1, 𝑥𝑁) ⋯ 𝑔(𝑎𝐿0

, 𝑏𝐿0
, 𝑥𝑁)

]

𝑁×𝐿0

                                                       (13) 

 

3) Calculate the output error 𝐸(𝐇𝟏) = ‖𝐇𝟏𝐇𝟏
†𝐓 − 𝐓‖.                                                                                       (14) 

       

           Sequential growing hidden nodes: Let k=0,  

    While 𝐿𝑘 < 𝐿𝑚𝑎𝑥 and 𝐸(𝐇𝐤) > 𝜀 : 

1) 𝑘 = 𝑘 + 1  

2) Randomly add new hidden node 𝛿𝐿𝑘 to the existing SLFNs. The total number of hidden nodes becomes 

𝐿𝑘 = 𝐿𝑘−1 + 𝛿𝐿𝑘  and the corresponding hidden-layer output matrix 𝐇𝐤+𝟏 = [𝐇𝐤, 𝛅𝐇𝐤], where  

 

𝛅𝐇𝐤 = [

𝑔(𝑎𝐿𝑘
, 𝑏𝐿𝑘

, 𝑥1)

⋮
𝑔(𝑎𝐿𝑘

, 𝑏𝐿𝑘
, 𝑥𝑁)

]                                                                       (15) 

 

3) The output weights 𝛽 are updated in a way as: 

 

𝐶𝑘 = (𝐼 − 𝛅𝐇𝐤𝜹𝐇𝐤
†)𝐇𝐤                                                                                      (16) 

 

𝛽𝑘+1 = 𝐇𝐤+𝟏
†  𝐓 = [

 𝐶𝑘

𝛅𝐇𝐤−𝟏
† − 𝛅𝐇𝐤−𝟏

†  𝐇𝐤𝐶𝑘
] T.                                                    (17) 

 

     End While. 

 

The number of new hidden nodes to be added need be kept constant, i.e., the algorithm allows 𝛿𝐿𝑘 = 𝛿𝐿𝑘+1. It is of 

interest that, the convergence of the proposed algorithm is given in [5]. 

 

4. Experimental verification of performance 

In this section, we investigate the performance of the proposed algorithm in some real-world benchmark regression 

and classification data sets [12] (cf. Table-1). All the simulations are carried out in Matlab R2013a environment 

running on a desktop PC dual core, 2,4 GHZ  CPU with 2 GB RAM. The performance of our method has been 

compared with the sequential/incremental/growing algorithm error-minimized extreme learning machine with 

growth hidden nodes and incremental learning (EM-ELM) [5]. The sigmoid function 𝑔(𝑥) = 1/(1 + exp (−𝑥)) is 

used as an activation function for all methods.  
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          In our experiments, all inputs (attributes) have been normalized into the range [-1, 1] while the outputs 

(targets) have been normalized into [0, 1]. The average results are obtained over 20 trials for all cases. For each trail 

of simulations, the datasets of the application was divided into training and testing datasets with the number of 

samples indicated in Table-1. 

 

Table-1: Specification of Benchmark Data Sets 

 

Datasets Attributes Classes Types #Training 

Data 

#Testing 

Data 

Machine CPU 8 - Regression 100 109 

Boston Housing 14 - Regression 250 256 

SinC 1 - Regression 1000 1000 

Diabetes 8 2 Classification 576 192 

Segment 19 7 Classification 1100 1110 

Satimage 36 7 Classification 3217 3218 

  

 
Fig-1: Average testing RMSE in SinC case. 

 
Fig-2: Average training time in SinC case. 
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SMP-ELM and EM-ELM have first been compared in benchmark problem: SinC function. One thousand training 

and testing data have been randomly generated from the interval [-10, 10] with a uniform distribution. Both 

algorithm increases the hidden nodes one by one along all experiments. 

         Fig-1 shows the testing root mean square error (RMSE) obtained by SMP-ELM and EM-ELM methods. We 

can observe that the testing RMSE of SMP-ELM is comparable with that of EM-ELM. It can be seen that SMP-

ELM can obtain better generalization performance than EM-ELM. Fig-2 shows the computational complexity 

comparisons of the two methods. We can show that our method for growing hidden nodes is much faster than EM-

ELM.  

         Further comparison has been conducted in some real benchmark regression and classification problems shown 

in Table-1. With the same expected accuracy (or the same maximum step), the network structure and the 

generalization performance obtained by both SMP-ELM and EM-ELM are compared. The stopping RMSE and 

maximum step for all datasets cases are presented in Table-2.a and Table-2.b.The apparent better results are shown 

in boldface. As compared to EM-ELM, SMP-ELM always has lower network structure with less testing RMSE in 

most cases. The testing standard deviation (STD dev.) of SMP-ELM is better or comparable with EM-ELM, which 

proved the stability of our approach. 

         Table-3 give performance results of SMP-ELM by adding hidden nodes one by one or group by group. As 

observe from the results, adding hidden nodes group by group can speed up the training time of the method and the 

generalization performance is increased. Furthermore, in view of network structure, growing hidden nodes one by 

one allow to obtain lower number of hidden nodes. 

 

Table-2.a: Performance comparison between SMP-ELM and EM-ELM (Regression) 

 

Regression 

Datasets 

Stop 

RMSE 

Max 

Steps 

Algorithms Training 

time (s) 

Testing 

RMSE 

Testing 

Dev. 

# Nodes Nodes 

Dev. 

 

Machine 

CPU 

0.06 20 EM-ELM 0.0172 0.0758 0.0313 13.95 5.3947 

0.06 20 SMP-ELM 0.0140 0.0687 0.0213 13.1 5.6186 

Boston 

housing 

0,13 200 EM-ELM 0,0289 0,1293 0,0109 13.05 4.861 

0,13 200 SMP-ELM 0,0156 0,1266 0,031 11.9 3.2428 

 

Abalone 

0.1 200 EM-ELM 1.8229 0.0993 0.009 8.7 6.13 

0.1 200 SMP-ELM 0.8588 0.0989 0.0062 8.3 5.526 

 

Table-2.b: Performance comparison between SMP-ELM and EM-ELM (Classification) 

 

Classification 

Datasets 

Stop 

Accuracy 

Max 

Steps 

Algorithms Training 

time (s) 

Testing 

Accuracy 

Testing 

Dev. 

# Nodes Nodes 

Dev. 

 

Diabetes 

0.8 25 EM-ELM 0.5070 0.7737 0.0331 20 8.0263 

0.8 25 SMP-ELM 0.2675 0.7828 0.0272 19.6 7.6667 

 

Segment 

0.9 50 EM-ELM 0.8221 0.8155 0.0109 11.25 1.9160 

0.9 50 SMP-ELM 0.617 0.8141 0.0107 9.7 1.3803 

 

Satimage 

0.8 50 EM-ELM 8,8498 0.8025 0.0016 16.10 2.9231 

0.8 50 SMP-ELM 4.5505 0.8035 0.0037 16.6 3.0258 

Datasets #Nodes 

added 

Training 

time(s) 

Testing 

Accuracy 

#Nodes 

 

Diabetes 

1-by-1 0.1903 0.76 15.1 

3-by-3 0.071 0.7656 16 

5-by-5 0.0491 0.7573 17.75 

 1-by-1 0.741 0.8152 10.4 
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Table-3: Performance of SMP-ELM with hidden nodes added (one by one or group by group) 

 

 

5. Conclusion 

        In this paper, we have propose an extreme learning machine with sequential Moore-Penrose Inverse (SMP-

ELM) growth of hidden nodes and incremental updating of output weights using an error-minimized-based method 

to automatically determine the hidden nodes number in generalized SLFNs. Our approach allows the random hidden 

nodes to be added one by one or group by group assuming that the generalized inverse of the existing hidden nodes 

is known. The output weights are then updated incrementally during the growth of the networks. The simulation 

results on real and artificial benchmark problems show that the new approach can achieve more compact network 

architecture with good generalization performance than EM-ELM. Results on growing hidden nodes group by group 

show that our approach can significantly reduce the computation complexity of incremental ELM. The performance 

of our method on other type of function (geninv, qrgeninv, ginv) for computing Moore-Penrose inverse matrices will 

be reported in the future work.  
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Segment 3-by-3 0.2668 0.8286 11.3 

5-by-5 0.1825 0.8425 12 

 

Satimage 

1-by-1 5.2557 0.7946 17.2 

3-by-3 1.7519 0.7979 17 

5-by-5 1.0483 0.8068 17.5 

http://www.ics.uci.edu/~mlearn/mlrepository.html

