
Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8276 www.ijariie.com 4347

SPARK STREAMING IMPROVEMENT

THROUGH BATCH SIZING WITH

PERFORMANCE ANALYSIS

Miss Urvashi Damor
1
, Dr. D.A.Parikh

2
,

1
 M.E. Student, Computer engineering, L.D. College of Engineering, Gujarat, India,

2
 Head of Department, Computer Engineering Department, L D College of Engineering, Gujarat, India

ABSTRACT

Handling big data means to handle huge data by dividing the data into batches and then data is being processed as

per spark engine. Spark basically an extension of Hadoop MapReduce. This thesis focuses on how to provide

dynamic batch sizing (Instead of fixed slots) as per user choice with increased performance.

Keyword: - Streaming; Spark; Batch Sizing; Spark Streaming; Dynamic Batch

1. INTRODUCTION

There are without doubt many several approaches are available for the system to deal with the real-time data records

before it stored into database for example foremost common open supply platforms for this apache spark. There are

two elementary attributes of information stream process. First, every each and record within the system should have

a timestamp that is done in statically. In this cases, Streaming were created at compile time. Second, every each

record is processed because it arrives. These second attributes guarantee a system that may react to the contents of

each record, and may correlate across multiple records over time, even right down to time unit latency. In

distinction, approaches like Spark Streaming method information streams in batches, wherever every batch contains

a group of events that arrived over the batch amount (regardless of once the information were truly created). This

can be fine for a few applications like easy counts and ETL into Hadoop, however the shortage of true record-by-

record processes makes stream process and time-series analytics not possible.

In Existing Proposed System Recently projected frameworks have chosen to treat stream processing as fixed size

batches of received Streaming Data. These types of framework set static batch size according to system workload

characteristics which is done as Offline Profile Creation. In offline Creation, batch interval build based on cluster

resources like memory, CPU, Workload characteristics, etc. If any changes in the cluster resources (e.g., failed

nodes, stragglers, new resources, etc.) or workload characteristics (e.g., changes in the number of aggregation keys,

etc.) would change the actual behavior of the workload thus created profile will be useless. If unpredictable

Incoming data is arrive into the system so there are some limitations (i) As Batch Interval is fixed, it becomes

difficult to handle the unpredictable incoming data rate (ii) Increase in Latency.

Distributed system is used some stream processing for achieving high throughput and low-latency. In existing

stream data processing based on static data size. Data size based and fixed batch time based techniques have two

challenges viz., profile modification in case of cluster resources and workload characteristics in case of

unpredictable data rates as well types of workloads .These leads to increase latency and decrease throughput. A

statically set batch size may either incur unnecessarily high latency under low load, or may not be enough to handle

surges in data rates, causing the system to destabilize. Few existing dynamic batch sizing techniques are less prone

to these two challenges as they are based on load shedding and offline learning. In load shedding, it loss the data

which is not an option and aprior provisioning of resources for handling unpredictably high loads can be expensive.

So making use of dynamic batch sizing we overcome these problems. This will improve the result of the throughput

and the latency. In this work, we are proposing a control algorithm which will handle the above challenges and

Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8276 www.ijariie.com 4348

dynamically set the batch interval time. We will compare default stream processing with modified Spark stream

processing framework. This will help us to improve the stream processing by implementing on it spark stream

processing framework.

2. HOW SPARK STREAMING WORKS

Apache Spark is most important Open Source Cluster in Now Days as Computing Framework. Spark is used as an

interface for Programming Cluster and gives the Result of Fault-tolerance and data Parallelism.

In Spark Streaming, there are three main events happen which are as following:

(i) Input Data are comes from many sources like Twitter Live Data, Kafka and Flume.

 (ii) Then, These Input Data are divided into some Batches.

(iii) These Batches of Data are processed by Spark Engine. It generates Final Output of Stream Data in

Batches which are placed into HDFS, File System and Database.

2.1 Architecture of Spark

Spark is tops level project for Apache Software Foundation. It provides more number of programming language and

spark support for the storage system.

 Fig -1: Architecture of Spark

Spark Architecture has three main components:

[1] Data Storage

[2] Management Framework

[3] API

[1] Data Storage:

For Data Storage Purposes, Spark uses HDFS File System. It is work with Hadoop Data Source with Including

HDFS, Cassandra, HBase, etc.

Following Figure shows that the components of the spark architecture.

Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8276 www.ijariie.com 4349

Fig -2: Components of Spark Architecture

[2] Resource Management:

Spark is deploying as impartial server and it can be run on Distributed Computing Framework like YARN or Mesos.

[3] API:

Spark based Applications create by Application Developers using a standard API interface. For many languages like

Scala, Java and Python Spark provides the API for these all.

Spark Project is used main four libraries like Spark-Sql, Spark-MLlib, Spark-Streaming, and Spark-Graphx and also

used Spark-core for Making of new Application for spark Spark-core and one of them of four libraries are used for

that application.

3. COMPARISION OF SPARK STREAMING WITH MULTIPLE APPROACH

There are unit several factors that have an effect on the performance of a stream process system - cluster size,

similarity of operators, batch sizes, etc. Previous literature have studied numerous techniques to adapt to changes in

operation conditions, either by elastically scaling the work or by discarding knowledge to shed load. However, in

several sensible use cases (stock ticks, bank transactions, etc.), losing of data in these fields are unacceptable.

3.1 Traditional Approach (Static Spark Streaming)

In this type of Approach, Input Data are distributed on spark cluster. This data are accessing from that cluster and

divided into fixed size of data and proceed Fixed batch time slots depends on previous measurement of system

capacity. Then it generates the output. But if some time system is not robust due to the some reasons like server

failure, more ingestion of data rates at that time system performance is decrease so it increases latency and takes

more time for the result.

A statically set batch size may either incur unnecessarily high latency under low load, or may not be enough to

handle surges in data rates, causing the system to destabilize.

3.2 Mordern approach (Dynamic Spark Streaming)

In this model, Input data are takes from the scala database and then create spark cluster and these all the data are

accessing from these cluster. But in this model have major advantage that it accessing not fixed size of data from the

cluster it took dynamically data and then generate batch slot as dynamically. So this model will helpful for maintain

the system stability due to the dynamically batch slot. And also decrease latency or increase more throughput.

Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8276 www.ijariie.com 4350

So making use of dynamic batch sizing we overcome these problems. This will improve the result of the throughput

and the latency.

4. DYNAMIC BATCH SIZING

In this section, we tend to initial describe intimately our downside formulation. Then we tend to discuss why some

initial solutions didn't reach the specified properties. Finally, we tend to discuss our algorithm rule which supported

the dynamic batch sizing.

We want to find changes in the operation conditions and consequently increase the batch interval so that the system

stability condition is maintained. Queuing delay can keep low, and therefore the system can stay stable at the upper

rate, though with a better latency.

4.1 Introduction

Our goal is extremely similar – we have a tendency to would like to adapt the batch interval supported the steadiness

of the streaming Data. Hence, at the primary look, one will devise an easy management rule that will increase the

batch interval if the operational purpose is within the unstable zone and contrariwise.

Dynamically adapting the batch interval may allow the system to adapt in our desired manner. We use dynamically

batching in spark streaming to adapt the batch size according to operating conditions. Following we describe why

we choose dynamic batch sizing and overcome limitations of static batch interval.

1) Benefits over static batch interval:

a) Achieving minimum batch interval

b) Ensure system stability

c) Speed

2) Depending on the workload, there are some limitations in static batch sizing, which is as following:

a) Larger batches of data may allow the system to process data at higher rates.

b) Data Size increased queue length also increase.

c) Increase the Processing Time.

4.2 How to Achieve Dynamic Batch Sizing

Input Streaming Data are comes from the any input source such as files, Streaming Dataset, etc. these input data are

proceed by the spark engine. At this, the streaming data are divides into some batches through default spark engine

and these divided batches are slicing as dynamically according to the system workload capacity.

These dynamically slicing of streaming data are adapting by the one control algorithm. CPU scheduler picks the

process from the queue. Using of this algorithm set the batch interval time and set the timer to interrupt after time

slice and dispatches it.

This control algorithm is useful to check the burst time of the system and dynamically set it according to the system

workload capacity so the system will become stable and gives the result as fast. It set the burst time according to the

time slice which is check following conditions and set the time slice.

(i) Completion time is less than time slice, process will leave the CPU after completion and CPU will

proceed with next process in the ready queue.

(ii) Completion time is larger than time slice, timer will be stopped and caused interruption to the OS and

executed process is placed tail of the queue.

Vol-4 Issue-2 2018 IJARIIE-ISSN(O)-2395-4396

8276 www.ijariie.com 4351

4.3 Algorithm

This algorithm is used for achieving the dynamic batch sizing on arriving spark streaming data. Streaming data are

slicing through dynamically at run time of the system. Algorithm is useful to slicing data according to the system

capacity using of dynamic batch sizing.

5. CONCLUSIONS

 In this proposed work, we are presenting control module for dynamically adapting the batch interval in batch stream

processing system such as spark streaming.

In this work, we would like to show that control algorithm improve response time, throughput and complexity by

comparing default spark streaming with the proposed one.

6. REFERENCES

[1]. Ankush Verma, Ashik Hussain Mansuri, Dr. Neelesh Jain ,” Big Data Management Processing with Hadoop

MapReduce and Spark Technology: A Comparison” IEEE Symposium on Colossal Data Analysis and Networking

(CDAN), 2016.

[2]. Xinyi Liao, Zhiwei Gao, Weixing Ji, Yizhuo Wang, “An Enforcement of Real Time Scheduling in Spark

Streaming ” IEEE 2015.

[3]. Omar Backhoff, Eirini Ntoutsi,” Scalable Online-Offline Stream Clustering in Apache Spark” IEEE 16th

International Conference on Data Mining Workshops, 2016.

[4]. Subhash Kumar, “Evolution of Spark Framework for simplifying Big Data Analytics” IEEE International

Conference on Computing for Sustainable Global Development (INDIACom), 2016.

[5]. Quan Zhang, Yang Song Ramani R. Routray,” Adaptive Block and Batch Sizing for Batched Stream Processing

System“IEEE International Conference on Autonomic Computing,2016.

