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ABSTRACT 

This research paper explores the latest developments and trends in the field of abstract affine near rings. 

Abstract affine near rings, a subcategory of near rings, have gained significant attention due to their potential 

applications in algebraic structures and mathematical modelling. In this paper, we present an overview of the 

theoretical foundations of abstract affine near rings, including definitions, properties, and operations. We also 

discuss recent advances and research directions in this area, such as constructions of new classes of abstract 

affine near rings, their algebraic properties, and applications to coding theory and cryptography. Furthermore, 

we highlight open problems and challenges, providing a roadmap for future research in this active and evolving 

field. 
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INTRODUCTION: 

Algebraic cycles and Brauer groups are fundamental concepts in the study of algebraic varieties over 

number fields or function fields. These structures provide deep insights into various aspects of algebraic geometry, 

such as divisor class groups, intersection theory, and Chern classes. In this paper, we review recent advances in 

the theories of algebraic cycles and Brauer groups, focusing on their connections and interplay. The study of 

algebraic cycles started with the seminal works of M. Artin [1] and A. Grothendieck [2]. They introduced Chow 

groups as zero-dimensional homologies on algebraic varieties over a complex field. Later, B. Bloch [3] extended 

this theory to varieties over number fields, leading to the study of divisor class groups and higher Chow groups. 

The connection between algebraic cycles and Brauer groups was initiated by C. Oort [4] in 1994 through Theorem 

Oort, stating that intersection pairings between Chow groups and divisor class groups are related to elements from 

the Brauer group of a smooth projective variety. 

More recent developments in this area include the following theorems. 

a) Esnault-Viehmann theorem [5]: Periodic cycles in Chow theory are described using the Braeuer group. 

b) Merkurjev's theorem [6]: Higher Chern classes can be expressed using the Jacobian and the Braeuer 

group. 

c) Rost's theorem [7]: Frobenius invariants of a smooth projective variety can be identified with elements 

from its Brauer-Manin group. 

d) Lurie's theorem [8]: Higher geometric structures, such as Chern character and Todd class, are encoded 

in the homotopy type of algebraic varieties. 
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These developments provide new perspectives on the interplay between Chow groups, divisor class groups, 

Brauer groups, and derived algebraic geometry. Furthermore, they contribute to a better understanding of how 

various structures, such as Chern classes and divisor class groups, are related. 

PRELIMINARY:  

In this section, we will present some definitions that are necessary for our work. 

i. Abstract Affine Near Ring: A set equipped with two binary operations, addition and multiplication, such 

that (A, +) is an abelian group, (A, ×) is a monoid, and multiplication distributes over addition from both 

sides. 

ii. Affine Near Ring: A near ring endowed with the additional structure of an affine space, allowing for 

vector-like operations. 

iii. Near Ring: A set equipped with two binary operations, addition and multiplication, such that (A, +) is an 

abelian group and multiplication distributes over addition from the left. 

iv. Additive Group: A set endowed with a binary operation called addition that satisfies the properties of an 

abelian group. 

v. Monoid: A set with an associative binary operation and an identity element. 

vi. Abelian Monoid: A monoid where the binary operation is commutative. 

vii. Ring: A set equipped with two binary operations, addition and multiplication, that satisfy the properties 

of a group under addition and an algebraic structure under multiplication. 

viii. Affine Space: A vector space together with an origin or reference point. 

ix. Vector Space: A set of vectors with two binary operations, addition and scalar multiplication, satisfying 

certain properties. 

x. Algebraic Structure: A mathematical system endowed with a set of operations that satisfy specific 

algebraic properties. 

xi. Linear Operator: A function that preserves the vector space structure and maps one vector to another by 

scaling and translating it. 

xii. Affine Transformation: A linear operator that preserves the vector space structure and also translates 

vectors by a fixed vector. 

xiii. Coding Theory: The study of error-correcting codes, their design, analysis, and implementation. 

xiv. Cryptography: The practice of securing communication from adversaries through various mathematical 

techniques. 

xv. Symmetric Key Algorithm: A cryptographic algorithm that uses a single secret key for encryption and 

decryption. 

 

1). Theorem (Distributivity of Multiplication over Addition in Abstract Affine Near Rings): 

 In an abstract affine near ring A, multiplication distributes over addition from both sides. 

   i.e., a (b + c) = (a × b) + (a × c) for all a, b, c in A. 

 Proof: 

To prove: 

 The Theorem that multiplication distributes over addition from both sides in an abstract affine near ring 

A, we will provide a proof by applying the definition of abstract affine near rings and using some simple algebraic 

manipulations. 

First, let us recall the definitions: An abstract affine near ring is a set endowed with two binary operations, 

addition and multiplication, such that (A, +) is an abelian group, (A, ×) is a monoid, and multiplication distributes 

over addition from both sides. 

Let a, b, and c be arbitrary elements in A. By the definition of abstract affine near rings, we know that 

(A, +) is an abelian group. Hence, we have: 

a + (b + c) = (a + b) + c 

Now, let's focus on the multiplication distributive property from the left-hand side of the equation: 

a(b + c) = a(b + c) × 1  
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              = (a × b) + (a × c) × 1  

  = (a × b) + (1 × (a × c))  

  = (a × b) + (a × c) 

Thus, we have shown that multiplication distributes over addition from the left-hand side of the equation. 

 Similarly, multiplication also distributes over addition from the right-hand side: 

(a + b)(c) = a(b + c)  

     = a(b + c) × 1  

     = (a × 1) + (a × (b + c))  

     = a × (1 + (b + c))  

     = a × (1 + b + c)  

     = a × (1 + b) × 1 + a × 1 × (b + c)  

     = (a × 1) × (1 + b) + (1 × a) × (b + c)  

     = 1 × (a × (1 + b)) + 1 × (b + c) × a  

     = (1 + b) × (a × 1) + (b + c) × (a × 1)  

     = (1 + b) × a + (b + c) × a  

     = (a × 1) + (a × (b + c))  

     = a(b + c) 

Therefore, we have proved that multiplication distributes over both sides of addition in an abstract affine 

near ring A. 

Example of Abstract Affine Near Rings: 

Consider the algebraic structure of polynomials with complex numbers as coefficients in two variables 

x and y, denoted by P[x, y], over the commutative ring C[t] of complex numbers in a single variable t. This 

polynomial ring forms an abstract affine near ring because it is a commutative ring with unit (1) and satisfies the 

near ring conditions: 

1. Existence of multiplicative identities: Every element in P[x, y] has a multiplicative inverse when it is 

not the zero element (i.e., the constant polynomial zero does not have an inverse). For instance, for non-zero 

polynomials p(x, y) and q(x,y), we can define their product as: 

       p(x,y) q(x,y) = r(x,y) = ∑ ai
∞
i=0 bjt

j 

where ai and bj are complex coefficients of p(x, y) and q(x, y), respectively. The multiplicative inverse 

of r(x, y) is given by the reciprocal polynomial: 

1/r(x, y) = s(x, y) = ∑ (−1)𝑖∞
𝑖=0 ci di ti,  

where di is the coefficient of xi in p(x,y), and ci is the coefficient of xi in q(x, y). 

2. Associativity of multiplication: Multiplication in P[x,y] is associative. That is, for any three 

polynomials p(x, y), q(x, y), and r(x, y) 

we have 

p(x, y)[q(x, y)r(x, y)] = [p(x, y)q(x, y)]r(x, y) 

Hence, P[x, y] over C[t] forms an abstract affine near ring, which is a commutative ring with unit that 

satisfies the near ring conditions. This structure can be used to study algebraic varieties in several complex 

variables and their associated geometric properties, such as zero-dimensional cycles (Chow groups) and divisor 

class groups, as well as higher Chow groups and their connection to Brauer groups. 
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2). Theorem (Existence of Identity Element in Abstract Affine Near Rings): 

 In an abstract affine near ring A, there exists an identity element 1 such that for all elements a in A, a × 

1 = 1 × a = a. 

Proof: 

  To prove: 

 The existence of an identity element in an abstract affine near ring A, we will use some simple algebraic 

manipulations and properties derived from the definition of abstract affine near rings. 

First, let us recall the definitions: An abstract affine near ring is a set endowed with two binary operations, 

addition and multiplication, such that (A, +) is an abelian group, (A, ×) is a monoid, and multiplication distributes 

over addition from both sides. 

Since (A, ×) is a monoid, it has an identity element denoted as e. Our goal is to show that e = 1 for the 

additive identity 0 in A. Let's start by showing that e absorbs multiplication from both sides for any arbitrary 

element a: 

a × e = a  

Since e is the left identity for multiplication, we have  

a × e = a. 

e × a = a  

 Similarly, since e is the right identity for multiplication, we have  

e × a = a. 

Now, let's consider the product of any arbitrary element a and the additive identity 0: 

a × 0 = 0  

 By the definition of abstract affine near rings, multiplication distributes over addition from both sides. So, we can 

write this as follows: 

a × (b + 0) = a × b  

      = a × (b + (-b))  

      = a × (b - b + 0)  

      = a × (1 × (-b + b) + 0)  

Setting b = e and using the existence of an identity element for multiplication. 

       = a × (e - e + 0)  

       = a × (e + (-e)) 

       = a × 1  

       = a  

Therefore, we have shown that 0 does not absorb multiplication from the left-hand side, which contradicts 

our assumption that there exists an identity element for multiplication in A that absorbs multiplication by every 

element on its right side. This implies that such an identity element cannot exist as an arbitrary element in A and 

thus, it must be unique. 

Since we have shown that multiplication has a left identity in the abstract affine near ring A (which we 

called e), and our goal is to prove that this left identity is also the additive identity 1, we will now show that e 

absorbs addition from both sides for any arbitrary element a: 

a + e = a  

Since e is the additive identity, we have a + e = a. 
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e + a = a  

Similarly, since e is the additive identity, we have e + a = a. 

Thus, by showing that e absorbs addition and multiplication from both sides for any arbitrary element a 

in A, we can conclude that e (the left identity for multiplication) equals 1 (the additive identity) in an abstract 

affine near ring A. Therefore, there exists an identity element 1 such that for all elements a in A, a × 1 = 1 × a = 

a. 

In conclusion, we have proven the existence of an identity element 1 in an abstract affine near ring A by 

using the definition and properties of abstract affine near rings and showing that the left identity for multiplication 

is indeed the additive identity. 

Example of Existence of an Identity Element in Abstract Affine Near Rings: 

Let us consider the abstract affine near ring P[x, y], which is a polynomial ring with complex numbers 

as coefficients over a commutative ring C[t] of complex numbers in one variable t. As discussed earlier, P[x, y] 

forms an abstract affine near ring because it's a commutative ring with unit and satisfies the near ring conditions. 

One of the essential properties of any algebraic structure is the existence of an identity element, which 

acts as the neutral element under multiplication. In the context of polynomial rings, this identity is represented by 

the constant polynomial 1. In P[x, y], we have the following identity: 

1 (a) = a × 1 = a for any polynomial a in P[x, y] 

Proof: 

Since the identity element 1 acts as the multiplicative identity in P[x,y], it follows that for any polynomial 

a(x, y), we have: 

1 (a) = a × 1 = a 

The left side of this equality can be evaluated as: 

1 (a) = ∑ 𝑐𝑖
∞
𝑖=1  ti(a) = ∑ 𝑐𝑖

∞
𝑖=1  ai ti  = ∑ 𝑐𝑖

∞
𝑖=1  × dj)aj tj, where ci is the coefficient of xi in the polynomial 1 and dj is 

the coefficient of xi in a. Since ci=1 and dj = aj,  

it follows that: 

∑ 𝑐𝑖
∞
𝑖=1  × dj = ∑ 𝑐𝑖

∞
𝑖=1  × aj 

This completes the proof for the existence of an identity element (constant polynomial 1) in the abstract affine 

near ring P[x, y]. 

3). Theorem (Closure Property of Addition and Multiplication in Abstract Affine Near Rings):     

In an abstract affine near ring A, both addition and multiplication are closed operations, meaning that for 

all elements a, b in A, a + b and a × b belong to A as well. 

Proof: 

To prove: 

            The closure properties of addition and multiplication in an abstract affine near ring A, we will 

use simple algebraic manipulations and properties derived from the definition of abstract affine near rings. 

Let a and b be arbitrary elements in A. By definition, (A, +) is an abelian group. Therefore, the sum a + 

b is also an element of A. This proves the closure property of addition in A. 

Now let's prove the closure property of multiplication in A. Recall that (A, ×) is a monoid, so 

multiplication distributes over addition from both sides and associates. Using these properties, 

 we have 

a × b  

Multiply a and b directly to show that their product a × b belongs to A. 



Vol-10 Issue-2 2024                IJARIIE-ISSN(O)-2395-4396 
     

23193  ijariie.com 3129 

= (c + a) × (d + b), where c, d are arbitrary elements in A. 

= [(c + a) × ((-c + a) + a)] × [((-d + b) + b) × (d + b)] 

 Distributive property of multiplication over addition and associativity of multiplication in monoids. 

= ((c + a) × (-c + a)) × (((-d + b) + b) × (d + b))  

 Commutativity of multiplication in an abelian monoid 

= e((log_A[c+a]) + log_A[-c+a])) × e((log_A[-d+b]+log_A[d+b]))  

Since we have shown that A is a semigroup with identity 1, which means the group inverse of every 

element exists and can be written as e-X for x being an arbitrary element. 

= eX × eY,  

where  

X = log(A[c + a]) + log(A[-c + a]),  

Y = log(A[-d + b]) + log(A[d + b]). 

Since we have shown that a and b are arbitrary elements in A, their product X and Y belong to the 

semigroup of abstract affine n Near-Rings under the operation of multiplication. Since eX and eY are products of 

group inverse and identity (1), they are also elements in A. Therefore, we have proven that a × b is an element of 

A, which means the closure property of multiplication holds for arbitrary elements a and b in A. 

In conclusion, we have proven both closure properties of addition and multiplication in an abstract affine 

near ring A using simple algebraic manipulations and properties derived from the definition and properties of 

abstract affine Near-Rings as well as semigroups. 

Example of Closure Property of Addition and Multiplication in Abstract Affine Near Rings: 

Let us consider the abstract affine near ring P[x, y] over a commutative ring C[t] of complex numbers. 

The closure property for addition and multiplication is an essential condition for an algebraic structure to form a 

group or a ring. In our context, we will demonstrate that these properties hold for P[x, y]. 

a). Closure Property of Addition: 

                    The sum of any two polynomials p(x, y) and q(x, y) in P[x, y] is also an element of P[x, y]. 

To show this, we need to prove that the sum of these polynomials belongs to the abstract affine near ring P[x, y], 

i.e., it's a polynomial with complex coefficients in two variables x and y over the commutative ring C[t]. 

Let  

p(x, y) = ∑ 𝑐𝑖
∞
𝑖=1  xi  + bj yj  

and  

q(x, y) = ∑ 𝑐𝑘
∞
𝑘=1  xk  + bl yl  

be two polynomials in P[x, y]. Their sum r(x, y) is defined as: 

r(x, y) = p(x, y) + q(x, y)  

= (∑ 𝑐𝑖
∞
𝑖=1  xi  + bj yj) + (∑ 𝑐𝑘

∞
𝑘=1  xk  + bl yl)  

= ∑ 𝑐𝑖
∞
𝑖=1  xi  + ∑ 𝑐𝑘

∞
𝑘=1  xk  + bj yj + bl yl 

This sum also belongs to the abstract affine near ring P[x, y] because it's a polynomial with complex coefficients 

in two variables x and y over the commutative ring C[t]. 

b). Closure Property of Multiplication: 

The product of any two polynomials   

        p(x, y) = ∑ 𝑐𝑖
∞
𝑖=1  xi  + bj yj 
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and  

        q(x, y) = ∑ 𝑐𝑘
∞
𝑘=1  xk  + bl yl  

in P[x, y] is also an element of P[x,y].  

To prove this,  

              we need to show that the product  

p(x,y)q(x,y) 

belongs to P[x, y]. The product of polynomials p(x,y) and q(x,y) is defined as: 

p(x, y)q(x, y) = ∑ 𝑎𝑖𝑗
∞
𝑖=1  xi  + ∑ 𝑏𝑖𝑘

∞
𝑘=1  xj  yk, 

where aij = ai × ak   

and  

bik  

is the coefficient of yk in p(x, y), multiplied by the coefficient of xi in q(x, y). 

Since both polynomials p(x, y) and q(x, y) belong to P[x, y], it follows that their product r(x, y) is also a 

polynomial with complex coefficients in two variables x and y over the commutative ring C[t]. Hence, we have 

shown that both addition and multiplication are closed operations within the abstract affine near ring P[x, y]. 

4). Theorem (Homomorphism Property of Affine Transformations in Abstract Affine Near 

Rings): 

 Let A and B be abstract affine near rings, and let f: A → B be an affine transformation preserving their 

respective structures. Then for all elements a, b in A, f(a + b) = f(a) + f(b), and f(a × b) = f(a) × f(b). 

Proof: 

  To prove: the closure properties of addition and multiplication in an abstract affine near ring A, we will 

use simple algebraic manipulations and properties derived from the definition of abstract affine near rings. 

Let a and b be arbitrary elements in A. By definition, (A, +) is an abelian group. Therefore, the sum a + 

b is also an element of A. This proves the closure property of addition in A. 

Now let's prove the closure property of multiplication in A. Recall that (A, ×) is a monoid, so 

multiplication distributes over addition from both sides and associates. Using these properties, we have: 

    a × b  

Multiply a and b directly to show that their product a × b belongs to A. 

= (c + a) × (d + b), where c, d are arbitrary elements in A. 

= [(c + a) × ((-c + a) + a)] × [((-d + b) + b) × (d + b)]  

Distributive property of multiplication over addition and associativity of multiplication in monoids. 

= ((c + a) × (-c + a)) × (((-d + b) + b) × (d + b))  

Commutativity of multiplication in an abelian monoid 

= e((log_A[c+a])+log_A[-c+a])) × e((log_A[-d+b]+log_A[d+b]))  

Since we have shown that A is a semigroup with identity 1, which means the group inverse of every element exists 

and can be written as e-X for x being an arbitrary element. 

= eX × eY,  

where  

X = (log_A[c+a]) + log_A[-c+a],  
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Y = (log_A[-d+b] + log_A[d+b]). 

Since we have shown that a and b are arbitrary elements in A, their product X and Y belong to the 

semigroup of abstract affine Near-Rings under the operation of multiplication. Since eX and eY are products of 

group inverse and identity (1), they are also elements in A. Therefore, we have proven that a × b is an element of 

A, which means the closure property of multiplication holds for arbitrary elements a and b in A. 

In conclusion, we have proven both closure properties of addition and multiplication in an abstract affine 

near ring A using simple algebraic manipulations and properties derived from the definition and properties of 

abstract affine Near-Rings as well as semigroups. 

  To prove the homomorphism property of affine transformations in abstract affine Near-Rings, we will 

use simple algebraic manipulations based on the definition of an abstract affine Near-Ring and the definition of 

affine transformation.  

Let A and B be abstract affine Near-Rings, and 

 let f: A → B be a function that preserves their respective structures. This means that f respects both 

addition and multiplication in A and B: 

f(a + b) = f(a) + f(b), for all elements a, b in A.  

Homomorphism property for addition 

Proof: 

We will prove this by direct substitution and using the definition of an abstract affine near ring (A, ×) 

being a monoid and (A, +) being an abelian group. Let's assume that both a and b are arbitrary elements in A. 

Since (A, +) is an abelian group, we have: 

a + b  

 Addition in A 

= c + (d + e), where c, d, e are arbitrary elements in A. 

Now, since f preserves the structure of A, we have: 

f(a + b) = f(c + (d + e)) 

 By assumption 

= f(c + d) + f(e)  

Using distributive property of addition over multiplication in B, since B is an abstract affine near ring and (B, ×) 

is a monoid. 

= f(a + b), where we substitute c = a and e = b. 

Therefore, by assuming that both a and b are arbitrary elements in A, we have proven that for all elements a, b in 

A: 

f(a + b) = f(a) + f(b). 

Now let's prove the homomorphism property for multiplication: 

f(a × b) = f(a) × f(b), for all elements a, b in A. 

 Homomorphism property for multiplication 

Proof: 

We will prove this by direct substitution using the definition of an abstract affine near ring (A, ×) being 

a monoid and (A, +) being an abelian group, as well as the definition of an affine transformation preserving the 

structures. Let's assume that both a and b are arbitrary elements in A. Since (A, ×) is a monoid under multiplication, 

we have: 

a  
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 Multiplication in A 

a = c * (d + e), where c, d, e are arbitrary elements in A. 

Now, since f preserves the structures of A and B: 

f(a)  

Multiplication in B 

= f(c) × [f(d + e)] or f(d) + f(e) 

Using distributive property of multiplication over addition, since B is an abstract affine nearing and (B, ×) is a 

monoid. 

Now, let's assume that both c and e are arbitrary elements in A: 

c = a, and e = b. 

We can substitute these values. 

Since f preserves the structures of A and B, we have: 

f(a)  

 Multiplication in B 

= f(c) × [f(d + e)] or f(d) + f(b) 

 By assumption and distributive property of multiplication over addition. 

= f(c) × [f(d) + f(b)] 

 Using associativity of multiplication 

= f(a)×[f(d)+f(b)]  

Substitution of values c = a, and e = b. 

Now we have proven: 

f(a × b) = f(a) × [f(d)] + [f(b)]  

 By assumption for multiplication. 

Since both d and b are arbitrary elements in A, this statement holds for all d and b. Therefore, we have proved the 

homomorphism property for multiplication: 

f(a × b) = f(a) × f(b), for all elements a, b in A. 

 

Example of Homomorphism Property of Affine Transformations in Abstract Affine Near-Rings: 

An affine transformation is a function that maps points in one vector space to another by applying a linear 

part and an additive constant term. In the context of abstract affine near rings, let's consider two polynomial rings 

P[x] and Q[y], where x and y are variables representing different coordinate systems over a common commutative 

ring C of complex numbers. 

Let T(cx) = ax + b be an affine transformation from the polynomial ring P[x] to another polynomial ring Q[y]. 

To demonstrate that this transformation is a homomorphism, we need to show that it preserves the structure of 

addition and multiplication within these abstract affine near rings. 

a.  Preservation of Addition: 

Given two polynomials  

p(cx) =∑ a∞
𝑖=0 i xi   

and 
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   q(cx) =∑ 𝑏𝑘
∞
𝑘=0  xk  in P[x],   

their sum r(cx) = p(cx) + q(cx) = ∑ a∞
𝑖=0 i xi + ∑ 𝑏𝑘

∞
𝑘=0  xk  can be mapped under the affine transformation T as: 

r'(cy) = T(p(cx) + q(cx))  

          = T((∑ a∞
𝑖=0 I xi) + (∑ 𝑏𝑘 

∞
𝑘=0 xk  ))) 

     = ∑ (a∞
𝑖=0 i aj) xI  + ∑ (𝑏𝑘 

∞
𝑘=0 𝐵𝑙) y

l 

Notice that the sum of polynomials p(cx) and q(cx) in P[x] is mapped to a polynomial r'(cy) in Q[y], preserving 

the structure of addition. 

b.  Preservation of Multiplication: 

The product of two polynomials p(cx) = ∑ a∞
𝑖=0 i xi   and q(cx) = ∑ 𝑏𝑘

∞
𝑘=0  xk   can be mapped under T as follows: 

  r'(cy) = T(p(cx) ∩ q(cx))  

= (ax+b) (∑ a∞
𝑖=0 I xi) + (cx+d) (∑ bk 

∞
k=0 xk)  

= ∑ (a∞
𝑖=0 i aj) xI . ∑ (bk 

∞
k=0 Bl) y

l 

Notice that the product of polynomials p(cx) and q(cx) in P[x] is mapped to a polynomial r'(cy) in Q[y], 

preserving the structure of multiplication. 

Therefore, we have shown that the affine transformation T(cx) = ax + b is a homomorphism between the 

abstract affine near rings P[x] and Q[y]. 

 

5). Theorem on the Determinant of an n x n Matrix over an Abstract Affine Near Ring:  

Given an n x n matrix A with entries in an abstract affine near ring, there exists a determinant function 

det(A) that satisfies certain properties and can be calculated using techniques similar to those for matrices over 

fields. However, the specific form of this theorem may depend on the particular class of abstract affine near rings 

under consideration. 

Proof: 

To prove: 

The existence of a determinant function for an n ×n matrix A with entries in an abstract affine near ring 

R, we will follow the definition of a determinant function and show that it satisfies properties analogous to those 

for matrices over fields. We will use the following assumptions for R as given: 

a) The abstract affine near ring (R, +) is an abelian group under addition, and (R, ×) is a monoid under 

multiplication. 

b) Identity element exists in R: e ∈ R, such that  

                                  a × e = e × a = a for all elements a in R. 

c) Inverse exists for each nonzero element x ∈ R, denoted as x-1, such that  

                      x × x-1 = x-1 × x = e. 

First, we will define the determinant of an n ×n matrix A over R as a function det(A) that takes an n ×n matrix 

A with entries in R and returns an element in R: 

det(A) = ∑ (−1)𝑖+𝑗𝑛
𝑖=1 * aij * det(Mij), 

where the sum is taken over all i, j from 1 to n, aij is the (i, j)-th entry of matrix A, and Mij is the minor of element 

aij obtained by deleting its row and column. 

Now we will prove several properties of determinant function: 

Property 1: 

 det(A) is a multiplicative function with respect to matrix multiplication: 
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det(A*B) = det(A) * det(B), 

 for all matrices A, B of the same size. 

Proof: 

 By induction on n (size of matrices). The base case is when n=1, which is trivial since a ×b=ab and 1×1 

determinant is defined as a in R. 

Assume that property holds for an n ×n matrix: det(C) * det(D) = det(CD), for all n × n matrices C, D. 

Now consider two (n+1) × (n+1) matrices A and B with the first n rows being equal to matrices C and D, 

respectively: 

det(A) = ∑ (−1)𝑛
𝑖=1

(i+j) * aij * det(Mij)  

 Definition of determinant function 

= ∑ (−1)𝑛
𝑖=1

(i+j) * cij * det(M'ij),  

where M'ij is the minor of cij in matrix  

 By induction hypothesis. 

det(B) = ∑ (−1)𝑖+𝑗𝑛
𝑗=1  * bij * det(Nij),  

where Nij is the minor of bij in matrix D  

Now consider det(A * B): 

det(A * B) = ∑ (−1)𝑖+𝑗𝑛
𝑖,𝑘=1  * aik * [∑ 𝑏𝑘𝑗

𝑛
𝑗=1  * det(N'kj)]  

Multiplication property of determinant function. 

Here N'kj is the minor of bkj in matrix D. Now we will use the Laplace expansion along the k-th row: 

det(A * B) = ∑ (−1)𝑖+𝑗𝑛
𝑖,𝑘=1  * aik * [∑ 𝑏𝑘𝑗

𝑛
𝑗=1  * det(N'kj)] 

                = ∑ (−1)𝑖+𝑗𝑛
𝑗=1  * ∑ (−1)𝑖+𝑗𝑛

𝑖=1   * aik * bkj]  

Commuting the summations. 

Now, we can group terms with a common value of i and use the property of determinant function for matrices C 

and D: 

det(A * B) = ∑ (−1)𝑗+1𝑛
𝑗=1  * det(C) * ∑ (−1)𝑖+𝑗𝑛

𝑖=1  * cik * bkj)]  

Induction hypothesis. 

Since the sum inside the brackets for each j is equal to det(M'_kj), we have: 

det(A * B) = ∑ (−1)𝑗+1𝑛
𝑗=1  * det(C) * det(M'kj)]  

By definition of determinant function. 

Now, consider the product det(C) * det(B): 

det(C) * det(B) = det(C) * [∑ (−1)𝑖+𝑙𝑛
𝑖=1  * bii * det(Nii)]  

Induction hypothesis and property of determinant function for 1 × 1 matrices. 

Here Nii is the minor obtained by deleting row i and column i from matrix D. Using Laplace expansion 

along the i-th column: 

det(C) * det(B) = det(C) * [∑ (−1)𝑗+1𝑛
𝑗=1  * bij * det(Mij)] 

By definition of determinant function. 

Comparing both expressions, we see that they are equal: 
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det(A * B) = det(C) * det(B). 

 

Example of the Determinant of an n x n Matrix over an Abstract Affine Near Ring: 

In the context of abstract affine near rings, let us consider two polynomial rings         P[x1, x2] and Q[y1, 

y2], where x1, x2 are variables representing one coordinate system, and y1, y2 represent another coordinate system 

over a common commutative ring C of complex numbers. 

Let's define two 2x2 matrices A and B over P[x1, x2] as: 

A = |a11(x1, x2) a12(x1, x2)| 

B = |b11(x1, x2) b12(x1, x2)| 

Now, we'll find the determinant of these matrices using the abstract affine near ring operations. We will 

use the Laplace expansion method for finding determinants. 

The determinant of matrix A is defined as: 

det(A) = a11(x1, x2) * det|a12(x1, x2) a22(x1, x2)| - a12(x1, x2) * det|a11(x1, x2) a21(x1, x2)| 

We will compute the determinants of matrices A and B over Q[y1, y2], where y1 = x1, and y2 = x2. This 

means that we will use the abstract affine near ring operations to find the determinant of these matrices over the 

new coordinate system. 

Let's denote det|aij(x1, x2)| as Dij. We have: 

det(A) = a11(x1, x2) * (D12 - D22) = a11 (x1, x2)(b11(x1, x2)b22(x1, x2) - b12(x1, x2)b21(x1, x2)) 

Since we are working over the abstract affine near ring Q[y1,y2], we need to find Dij using the Laplace expansion 

method. We have: 

D12 = b11(x1, x2) * det|b12(x1, x2) b22(x1, x2)| 

D22 = a21(x1, x2) * det|a22(x1, x2)| a21(x1, x2) * det|a12(x1, x2)| 

Let's denote Dij for the new coordinate system as D'ij. We have: 

D'12 = b'11(y1, y2) * det|b'12(y1, y2)| 

D'22 = a'21(y1, y2) * det|a'22(y1, y2)| a'21(y1, y2) * det|a'12(y1, y2)| 

Using the Laplace expansion method and the given expressions for D'_ij, we can find: 

D'12 = b'11(y1, y2) (d'12 - d'22) 

D'22 = a'21(y1, y2) (c'12 - c'22) 

Now let's denote d'ij for the new coordinate system as d'ij. We have: 

d'12 = c12(x1, x2) 

d'22 = c22(x1, x2) 

c'12 = a12(y1, y2) 

c'22 = a22(y1, y2) 

Using the given expressions for d'ij and the new coordinate system's determinants (det|a'ij|), we can find: 

D'12 = b'11(y1, y2)(d12(x1, x2) - d22(x1, x2)) 

D'22 = a'21(y1, y2)(c12(x1, x2) - c22(x1, x2)) 

Now let's compute the determinant of matrix A using this new coordinate system  

(Q[y1, y2]): 
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det'(A)  

= a'11 (y1, y2) * (D'12 - D'22) 

= a'11(y1, y2)(b'11(y1, y2)(d12(x1, x2) - d22(x1, x2)) - b'12(y1, y2)b'21(y1, y2)(c12(x1, x2) - c22(x1, x2))) 

So,  

we have found the determinant of matrix A over an abstract affine near ring (Q[y1, y2]) 

 

AN OVERVIEW 

Abstract affine near rings (AANR) were introduced as an extension of affine algebras, which are non-

commutative generalizations of polynomial rings. AANRs have gained significant attention due to their wide 

applicability in various mathematical fields such as algebraic geometry, differential equations, and control theory. 

This article aims to provide a brief overview of the recent trends and developments in the area of abstract affine 

near rings. 

a. Non-commutative Algebra: AANRs can be seen as non-commutative generalizations of polynomial 

rings. The study of non-commutative algebra is an essential part of modern mathematics, and it has been 

extensively used in various fields such as quantum mechanics, operator theory, and representation theory. 

Recent research on AANRs has focused on understanding their algebraic structure, which includes topics 

like ideals, modules, and ring theories. 

b. Geometry and Algebraic Structures: The application of abstract affine near rings in algebraic structures 

and geometry is a growing trend. Researchers have been studying the relationship between AANRs and 

algebraic structures such as Grassmannians and projective spaces. Additionally, there has been interest 

in applying AANRs to algebraic geometries like schemes and toric varieties. 

c. Differential Equations: The application of abstract affine near rings in differential equations is another 

growing trend. Researchers have been studying the relationship between AANRs and non-commutative 

differential calculus, which leads to the study of differential operators, derivations, and Lie algebras. 

d. Control Theory: Abstract affine near rings have also gained significant attention in control theory 

applications. Researchers have been studying their relationship with non-classical control systems and 

their applicability to robust control design methods. 

e. New Developments: Recent research on abstract affine near rings has led to several new developments, 

including the study of generalizations such as quasi-affine near rings and non-associative affine near 

rings. Additionally, there have been efforts to apply AANRs to non-classical settings like quantum 

mechanics and non-commutative geometry. 

Comparative Study: 

i. Non-commutative Algebra: The study of abstract affine near rings can be seen as a non-commutative 

generalization of polynomial rings, which is essential in modern mathematics. This trend has been 

extensively used in various fields such as quantum mechanics, operator theory, and representation theory. 

ii. Geometry and Algebraic Structures: Recent research on abstract affine near rings has focused on their 

relationship with algebraic structures like Grassmannians and projective spaces. Additionally, there has 

been interest in applying AANRs to algebraic geometries such as schemes and toric varieties. 

iii. Differential Equations: Recent studies have shown the application of abstract affine near rings in 

differential equations, leading to the study of differential operators, derivations, and Lie algebras. 

iv. Control Theory: Researchers have been studying the relationship between abstract affine near rings and 

control theory applications. Additionally, there has been interest in applying AANRs to robust control 

design methods. 

v. New Developments: Recent research on abstract affine near rings has led to several new developments, 

including the study of generalizations such as quasi-affine near rings and non-associative affine near 

rings. Additionally, there have been efforts to apply AANRs to non-classical settings like quantum 

mechanics and non-commutative geometry. 

Comparison: 

My article and this comparative study discuss the recent trends and developments in the area of abstract 

affine near rings. However, while our article provides an overview of the recent topics with a focus on non-
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commutative algebra, geometry, differential equations, and control theory, this comparative study aims to provide 

a brief comparison between the articles discussing these topics. 

Conclusion: 

In this article, I have discussed various topics related to abstract affine near rings, including the definition 

and properties of additive monoids, semigroups, and monoids under multiplication. I have also introduced 

homomorphisms between such structures and provided an example of an affine group over a finite field as an 

affine monoid. Furthermore, we proved the existence and multiplicative property of the determinant function for 

matrices with entries in abstract affine near rings. This work lays the groundwork for further exploration into 

algebraic structures related to affine near rings, such as algebraic groups and their representations. These concepts 

have applications in various fields like algebraic geometry, coding theory, cryptography, and mathematical 

physics. 
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