To Study Pharmacognostic Parameter Of Urena Lobata

Auther Name-

- 1. Madane Dhananjay Dnyaneshwar
 - 2. Kasar Aniket Madhukar
 - 3. Padolkar Pratik Jalindar
 - 4. Mohare Harshad Baban
 - 5. Kasar Nilesh Sharad

Guidance Name- Prof. Miss Priyanka Jadhav

Dsp Cop walki

1. ABSTRACT

Urena lobata is a plant (Malvaceae family) found abundantly in tropical and sub-tropical regions. Traditionally plant is used in rheumatism, wound and as antiseptic. To evaluate the scientific basis for the use of the plant. Pulverized Urena lobata leaves were investigated for physical constant (Moisture content, LOD, ash value, Extractive value). The dried leaves were pulverized and liquid-liquid extraction (Hydro-alcoholic extraction) is carried out. The fresh leaf of Urena lobata was studied for microscopical characterization which shows upper and lower epidermis, palisade cells, spongy parenchyma in lamina while collenchyma and vascular bundles were observed in midrib. Although herbal drugs are known to elicit their response quite slowly but they are now overtaking allopathic medicine owing to its high cost, side effects, drug resistance and development of tolerance. This article spots some light on an obscured herbal drug named *Urena lobata* Linn (Malvaceae) for its antimicrobial activity and also provides some pharmacognostic studies of the drug.

KEYWORDS : Soxhlet Extraction, Moisture content, Ash Value, Extractive value, Ash value.

2. INTRODUCTION :

Medicinal plants contain bioactive compounds which over the years have been exploited in traditional medical practice for treatment of various ailments. Urena lobata Linn(Bengali name: Bun ochra, Aramina gacch; Family: Malvaceae) is a wild flowering shrub as well as weed in paddy fields. In Bangladesh they are mostly found in Chittagong, Naogaon, Jessore and Tangail districts and are native to the Indian continent, South-east China, Taiwan, Southeast Asia and Northern Australia.

The plant possesses antidiabetic, antidiarrheal, antioxidant, antibacterial, hepatoprotective and immunomodulatory activities. Traditionally these two plants are used as abortifacient, oxytocic, antiimplantation, antidiarrheal and antimicrobial agents in the southeast areas of Bangladesh. As part of our continuing investigations on medicinal plants of Bangladesh, we studied the antimotility, analgesic, antiinflammatory and membrane stabilizing activities of U. lagopodies and U. lobata in addition to the results of preliminary phytochemical screenings of the above plants growing in Bangladesh. Urena lobata Linn (Malvaceae), otherwise called Caesar weed, is a shrub that grows Between 0.6-3 m tall and up to 7 cm in basal diameter. The plant found abundantly in tropical and Sub-tropical regions of the land. The plant blooms with pink coloured flowers. Various extracts of Leaves and roots are used in herbal medicine to treat such diverse ailments as colic, malaria, Gonorrhoea, fever, wounds, toothache and rheumatism. Antihyperglycemic effect of Urena lobata Leaf extract by inhibition of DPP-IV on diabetic rats.

Aerial parts of Urena lobata is reported to Contain Mangifera and Quercetin and roots having imperatorin and furanocoumarin. Urena lobata is one of the medicinal plants used to treat diabetes in Nigeria. Its hypoglycaemic and antidiabetic Activities have been demonstrated. Plants are the only economic source of a number of well Established and important drugs; in addition, they are the sources of some chemical intermediates needed for the production of a number of drugs. The popularity of natural drugs all over the world in recent years is an indication of significant contribution of Pharmacognosy in modern medicine.

Herbal medicines have been a main source of primary healthcare all over the world..According to the World Health Organization, more than 70% of the world's population must use traditional medicine to satisfy their principal health needs2.India is the

largest producer of medicinal herbs and is called as botanical garden of the World. Herbal medicine is gaining popularity bothin developing and developed countries because of their natural origin3. Current estimates suggest that, in many developing countries, about two-third of the population relies heavily ontraditional practitioners and medicinal plants to meet primary health care needs4. India has an officially recorded list of 45,000plant and a various estimation of 7500 species of medicinal importance5. Globally sales of herbal species medicines are growing by about 10% annually. Over 25% of our common medicines contain at least some compounds obtained from plants. The use of traditional medicines increased mainly due to the failure of modern medicines to provide effective treatment or chronic diseases and emergence of multidrug resistantbacteria and parasites6. Herbal drugs referred as plant materials or herbalism, involves the use of whole plant or parts of plant, to treat injuries or illnesses. The wide acceptance of herbal medicines are due to low/minimum cost, potency and efficiency, enhanced tolerance, more protection, fewer sideeffects, complete accessibility and recyclable nature7,8,9.Although newer synthetic antimicrobial agents are being developed nowadays, a variety of infective microorganisms have also been identified causing persistent and chronicinfections in humans10. Infections caused by Escherichia coli, Klebsiella spp., Salmonella spp., Pseudomonas spp. And Staphylococcus *aureus* are the most common ones. The continuous use of antibiotics has bled to the development of resistant microorganisms. Also antibiotics are also known to cause hypersensititivity. This problem can be tackled by exploring alternative antimicrobial agents which can overcomethe drawbacks of antibiotics. Hence, some local medicinal plants are now been studied for possible antimicrobial activity 11

3. AIM & OBJECTIVE -

AIM - "To study pharmacognostic parameter of selected medicinal plant"

OBJECTIVES –

- ✓ Identification, collection and authentication of plant.
- ✓ Processing of plant material.
- ✓ Preliminary pharmacognostic evaluation.
- ✓ Preparation of the extract
- ✓ Physicochemical investigation of plant

4. LITERATURE RIVIEW :

1) **PA shelar, et al.,** Pharmacognostic evaluation, Phytochemical screening and Antimicrobial Study ofLeaves Extracts of Urena Lobata Linn 2017 reported.

Phytochemical screening from materials and methods and physical evaluation and also refer table format result of physical evaluation.

2) **Sayyad sipai babu, et al.,** A pharmacological review of urena Lobata Plant 2016 reported. Taxonomical classification and also some part of morphology and distribution.

3) **Muhammad Torequal Islam, et al.,** A revision on urena Lobata 2017 reported. Plant Taxonomy and Traditional uses.

4) **P.L. Rajagopal, et al.,** Anti-inflammatory activity of the leaves of urena Lobata Linn. 2018 reported. Anti-inflammatory activity of urena lobata plant.

5. PLANT PROFILE -

URENA LOBATA

Fig no 1 : Matured & Ripe Fruit

Fig no 2: Aerial Part

Fig no 3 : Flowers of Urena Lobata

Taxonomy of Urena lobata L.

Taxonomical classification S	Synonyms	Common names
Kingdom: PlantaeLSubkingdom: TracheobiontaLSuper division: SpermatophytaLDivision:MangoliophytaLClass:MangoliopsidaLSub class:DilleniidaeLOrder:MalvalesFamily: MalvaceaeGenus: UrenaSpecies: Lobata	Urena lobata Linn. Urena americana L. f. Urena grandiflora DC. Urena trilobata Vell. Urena lobata L. Urena diversifolia Schumach	Kingdom: Plantae Subkingdom: Tracheobionta Super division: Spermatophyta Division:Mangoliophyta Class:Mangoliopsida Sub class:Dilleniidae Order:Malvales Family: Malvaceae Genus: Urena Species: Lobata

CHEMICAL CONSITUNT :

The main constituents of Urena lobata Linn, includeflavonoids, flavonoids glycosides,

β-sitosterol, stigmasterol, furocoumarin, imperatorin, mangiferin and quercetin. Also, it contains kaempferol, luteolin, hypolatin and gossypetin. Rootscontain carbohydrate 33%, protein 1.9%, fat 1.8%, fiber 51.7%,moisture 6.6%, and ash 5%. Roots also, contain ephedrine, 4'-O-Me-apigenin and phenolic acids such as vanillic, *p*- coumaric, and melilotie acids. Mannose and xylose are present inmucilage. Raw leaves are reported to contain 81.8% moisture, 54 cal, 3.2 g of 57 protein, 0.1 g fat, 12.8 g carbohydrates, 1.8 g fiber, 2.1 g ash, 558 mg calcium and 67 mg of phosphorous per100 g. The leaf contains only traces of alkaloids also containsflavonoid like 4'- O-Me-kaempferol and other constituents likekaempferol, rutin, afzelin, astragalin, tiliroside, kaempferol-3-O-β-D-glycopyranoside-7-O-α-L-rhamnoside, kae rhamnoside, kaempferol-7-O-α-L-rhamnoside- 4'-O -β-D-glycopyranoside, and crenuloside. Leaf also contains phenolic acids such as vanillic, syringic, cis and trans p

coumaric and gallic acids.. The mucilage containshomopolysaccharide of glucose (glucan). Stem contains vanillicand *cis* and *trans p*- coumaric acids. The sugar monomer present in stem mucilage is reported as xylose12,14-1

BOTANY :

The plant *Urena lobata* Linn of Malvaceae family is an erect herbaceous or semi-woody, a tomentose shrub growing 60-250 cm or more in height and has a basal diameter of 7cm. *Urena lobata* is annual in subtropic and perennial in the tropics. It grows in moist regions. *Urena* grows best in hot, humid climates, with direct sunlight and rich, well-drained soil. It is found wild in the tropical and temperate zones of North and South America and in Asia, Indonesia, the Philippines, and Africa. Cultivated crops, usually grown as annuals, are found mainly in the Congo Basin and Central Africa, with smaller plantings in Brazil, India, andMadagascar.The young stem and branches are covered with a bit of harsh scattering stellate hair and sessile or shortly stalked pinkish auxiliary flowers. Leaves are simple, alternate, petiolate, stipulate; blade-very variable, usually broader, long round or ovate, up to 10-15 cm long and cordate at the base angled or shallowly 5-7 lobed12, 15, 16.

PHARMACOLOGICAL ACTION :

The root of *Urena lobata* is a popular diuretic in Assam. A decoction of its stem and root is used in brazil as a remedy in severe windy colic. A poultice prepared from the roots and leaves is used as an emollient. The flowers are administered as a pectoral and expectorant in dry and inveterate coughs. An infusion of the flowers is used as a gargle for aphthae and sore throat. The root is used in Assam as an abortifacient12. Traditionally the plant is being used in the treatment of febrifuge and rheumatism. It is useful for wounds, toothache, gonorrhea and as food for animals as well as humans14,16,17. It was also reported that, the plant parts exhibits antioxidant activity18.19, cytotoxic activity19,radical scavenging potential20, antimicrobial21, anti-motility, analgesic, anti-inflammatory, membrane sensitizing activity22, immunomodulatory23,24, hypoglycemic effect25, anti-diarrheal26, hypolipidemic27 and anti-fertility/spermatogenesis effect28.

MORPHOLOGY AND DISTRIBUTION :

It is a subshrub 0.6-3 m in height and up to 7 cm in basal diameter. Urena lobata is an annual in subtropic and perennial in the tropics. A variable under shrub about 0.6-3 m in height and up to 7 cm in basal diameter. It grows in moist regions [4]. Urena grows best in hot, humid climates, with direct sunlight and rich, well-drained

soil. It is found wild in the tropical and temperate zones of North and South America and in Asia, Indonesia, the Philippines, and Africa. Cultivated crops, usually grown as annuals, are found mainly in the Congo Basin and Central Africa, with smaller plantings in Brazil, India, and Madagascar.

BENEFITS AND DETRIMENTS :

Various extracts of leaves and roots are used in herbal medicine to treat such diverse ailments as colic, malaria, gonorrhoea, fever, wounds, toothache, and rheumatism. A semi-purified glycoside obtained from Caesar weed leaves was 86% as effective an anti-inflammatory as aspirin in rats.

However, the plant is little browsed by cattle and can become a severe weed in pastures and

plantations. Burs that collect on clothing and in animal fur are a nuisance. The plant was used

traditionally as an antibacterial, anti-inflammatory, amoebicidal also in bronchitis, diuretic, gastritis, cough, nephouritis, diarrhoea, fever, pneumonia, gingivitis, emollient, menorrhagia, and emmenagogue. It is also used for gonorrhoea, wounds toothache and also used for food for animals as well as humans previous research by other workers on the aerial part of the plant yield mangeferin and quercetin. Triglycerides were isolated from the plant 3 and imperatorin, and a furocoumarin was isolated from roots of Urena lobata.

MATERIALS AND METHODS :

1)Selection of Plant Material :

In the present study, I have selected the plant urena lobata Linn leaves.

2)Collection of Plant material :

The plant material Urena lobata Linn (Malvaceae) were collected from the Fresh drug obtained

were shade dried and coarsely powdered and passed through sieve 100 mesh sizes and stored in air - tight containers for further use.

3)Preparation of Extract :

The pulverized dried Urena lobata leaves were extracted with ethanol using Soxhlet apparatus. The powder of Urena lobata leaves were also macerated with chloroform water. Ethanol and aqueous extracts were filtered & evaporated to dryness.

4)Physical evaluation :

The ash values, extractive values and loss on drying were performed according to the officinal methods prescribed in Indian Pharmacopeia.

5)Phytochemical screening :

The dried leaves powder was evaluated for phytochemical screening.

TRADITIONAL USES :

1)Antioxidant Activity :

Effects of U. Lobata on the oxidative status of normal rabbits: With recognized therapeutic effects, the plant was studied for toxic side-effects. Results showed no evidence of oxidative damage on liver and pancreatic malondialdehyde (MDA) levels on rabbits and even seemed to provide protection against lipid peroxidation.

2) Phytochemical/antioxidant/antimicrobial :

Three compounds isolated from U. lobata leaf extract: Kaempferol, quercetin, and tiliroside which showed strong antimicrobial activity against Escherichia coli, Bacillus subtilis, and Klebsiella pneumonia. The study supports the traditional use of the plant for treatment of infectious diseases.

3) Antidiarrheal/seed extract :

A study reports the antidiarrheal potential of seed extracts of U. lobata used in the traditional medicine by the Naga tribes of India. Both plants showed significant inhibitory activity against castor oil-induced diarrhoea and prostaglandin E2 (PGE2)-induced intrafluid accumulation. Both showed a significant reduction in gastrointestinal motility with no signs of toxicity. Results help explain it traditional use as an antidiarrheal agent.

4) Antibacterial Activity :

A study of the methanol extract of U. lobata showed a broad spectrum of antibacterial Activity Comparative study of a methanolic extract of U. lobata root and a standard herbal formulation showed antibacterial activity.

5) Immunomodulatory Activity : A study of the methanolic extract of U. lobata showed phagocytosis and intracellular killing potency of human neutrophils. The study concludes that U. lobata possesses

immunomodulatory property. Studies have previously yielded mangeferin and quercetin from the aerial parts of the plant. This study isolated imperatorin, a furocoumarin, from the roots.

6) Antidiabetic/hypolipidemic :

Study of aqueous extracts of U. lobata (roots and leaves) in STZ-induced diabetic rats showed recognizable hypoglycaemic/antidiabetic and anti-hyperlipidaemic effects.

Hypoglycaemic/long-term effects of root extract Study in rabbits showed U. lobata aqueous extract of roots significantly reduced body weight and fasting glucose. It exerted an initial toxic effect on hepatocytes and also caused bile obstruction. However, the effects were not severe and not sustained. A reduction in dose, frequency, and duration of administration may reduce the side effects observed in the study.

7) Antifertility/spermatogenesis effect :

Study evaluated antifertility activity in adult male Wistar albino rats. Results showed U. lobata reversibly inhibited spermatogenesis and steroidogenesis indicating reversible antifertility activity.

8)Antioxidant/cytotoxic/leaves :

Study evaluated a methanolic extract of leaves for antioxidant and cytotoxic potentials. The extract showed potent antioxidant activity with effective scavenging of free radicals and potent cytotoxic activity in the brine shrimp lethality assay.

REFERENCE :

1. Babu SS, Madhuri DB, Ali SL. 2016. A pharmacological review of Urena lobata plant. Asian J. Pharm. Clin. Res. 9:20-22.

2. Sipai SB, Dasari BM, Shaik LA. A Pharmacological Review of Urena Lobata Plant. Asian Journal of Pharmaceutical and Clinical Research 2016; 9(2):20-2.

3. Abii TA, Onuha EN. Preliminary investigation into the phytochemicals, vitamins and mineral constituents of the leaf of two tradomedicinal plants –urena lobata and cassia alata used in Nigeria. IOSR Journal of Applied Chemistry 2014;7(2):1-4

4. Mazumder UK, Gupta M., Manikandan L, Bhattacharya S. Antibacterial activity of Urena lobata root. Fitoterapia 2001; 72:927-29.

5. Thirumalaikumaran R, Chamundeeswari D, Seethalakshmi S, Gopa V.

"Pharmacognostical, phytochemical and Antioxidant studies of the aerial parts of Urena lobata L." Basic Research Journal of Medicine and Clinical Sciences. 2013; 2(2):32-36.

6. Mukherjee PK, Quality control of herbal drugs, Bussiness Horizon's, Pharmaceutical publisher, New Delhi, 2002, 138-141.

7. Evans WC, Trease and Evans, Pharmacognosy, W.B. Saunders, Edinburgh London, New York Philadelphia, 15th Edition, Pg. No.519-520, 545-547.

8. Rinku M, Sanjay PU. "Antioxidant Activity of the Methanolic and Aqueous Extracts of Urena lobata (Linn.) By DPPH Method RRJPP," Research & Reviews: Journal of Pharmacognosy and Phytochemistry, 2013; 1(1): 6-9.

9. Indian Pharmacopoeia, Government of India, Ministry of Health and Family

Welfare, Controller of Publication, 4th edition, New Delhi, 1996. 4(II), A53-A54 10. Sayyad S, Dasari B, Shaik L. "A Pharmacological Review of Urena Lobata Plant," Asian Journal Pharm Clin Res, 2016; 9(2): 20-22

11. Mshelia IY, Dalori BM. "Effect of the Aqueous Root Extract of Urena lobata (Linn) on the Liver of Albino Rat." Res. J. Appl. Sci., Engine. Technol., 2013; 5(1): 01-06