
Vol-10 Issue-3 2024 IJARIIE-ISSN(O)-2395-4396

24340 www.ijariie.com 5791

Transitioning from Monolithic to

Microservices Architectures: Evolution,

Comparison, and Case Study on Netflix

Mr. Shantanu Patil “ , Prof Flavia Gonsalves**

Institute of Computer Science, Mumbai Educational Trust-MET ICS, Mumbai 400068, India

mca22_1335ics@met.edu

Abstract— The transition of software architecture from monolithic to microservices represents a significant shift

and evolution in the life cycle of development and deployment. We hereby present the basic differences between

monolithic architectures and microservices, discussing the advantages and challenges associated with each, and give

the detailed case study of Netflix, as a leading company in the implementation of microservices. In this respect, it is

interesting to look at how the implementation went on, what wins were observed, and what lessons were taken. The

paper seeks to provide an all-round understanding of how microservices can fix the places where monolithic

architectures have failed, therefore offering insights for an organization contemplating a similar transition.

Keywords— monolithic, microservices, Netflix

I. INTRODUCTION

In the rapidly evolving domain of software development, architectural patterns constitute a foundation for the
development of scalable, maintainable, and efficient applications. The traditional form of architecting software has
been monolithic, where a single unified codebase contains all the functions of the application. However, as
applications grow in scale and complexity, the monolithic approach begins to show its weaknesses-such as scaling,
maintaining, or deploying the software.

The emergence of microservices architecture is creating a paradigm shift in the way the design, management,
and implementation of modern software systems are conceptualized. Microservices distribute an application into a
set of small and loosely coupled services which may be designed, deployed, and scaled independently of each other.
This new paradigm promises flexibility, resilience, and scalability and is therefore an ideal choice in modern
software development.

This paper presents the change from monolithic to microservices architecture, which is done by analyzing and
comparing both of their main characteristics, and also looking at Motives behind such a change. We also present a
detailed case study on Netflix, one of the first and largest adopters of microservices, allowing a more practical
experience exposing benefits and lessons learnt that an organization should take into consideration during deciding
factors for such a change.

A. History

1) Monolithic Architecture: Monolithic architecture has been the traditional model used for designing systems

of software. All components and functionalities of an application were closely glued together into a single codebase.

This also consisted of the user interface, business logic, and even data access layers. Although monolithic

architecture makes things easier to develop and deploy during the early stages, it usually poses some major

challenges as the application grows:

Fig. 1. Monolithic Architecture

mailto:mca22_1335ics@met.edu

Vol-10 Issue-3 2024 IJARIIE-ISSN(O)-2395-4396

24340 www.ijariie.com 5792

a) Scalability: A monolith application normally scales very complex and resource-dependent. Since

components are dependent on one another, scaling typically involves multiple deployments of this full application,

which is inefficient.

b) Maintenance: A very large monolithic codebase is pretty hard to manage. Small changes within one part

of your application may require a lot of testing and redeployment of the full system, heightening the risk of bugs

being introduced.

c) Flexibility: Monolithic applications are not flexible in the event of changes. If one component needs to be

updated or replaced, the whole application needs to be changed, making the development cycle slow and less

inclined towards innovation.

d) Deployment:Continuous deployment and integration are not easy in a monolithic framework. When a

change is made, whether small or large, the whole application needs to redeploy, which means bringing down the

application and affecting the services.

2) Evolution to Microservices Architecture: As much as the limitations brought about by monolithic

architecture in the development of software have necessitated an admiration of Microservices Architecture as an

alternate, appreciably modular approach to building systems of software. By definition, Microservices Architecture

is the practice that completes breaking an application into a series of small independent services focused on specific

and precise functionality. The services communicate with one another only through well-defined APIs:

Fig. 2. Microservices Architecture

a) Scalability: The ability to scale microservices in a way depending on demand is one of the most obvious

benefits. Such fine-grained scaling fits perfectly with resource optimization and ultimately better performance.

b) Maintenance: Every microservice can be developed, tested, and deployed independently. Separation of

such concerns brings a decreased risk of far-reaching issues and simplifies maintenance.

c) Flexibility: This architecture delivers room for innovation. Microservices allow teams to try new

technologies or methodologies within individual services without affecting the whole system.

d) Deployment:Continuous integration and continuous deployment pipelines are easier with microservices.

Because services are independent, they can be deployed or updated without downtime-better, faster, and more

reliable releases.

II. COMPARATIVE ANALYSIS

1) Scalability:

Attribute Monolithic Architecture Microservices Architecture

Scaling Approach
Vertical Scaling (adding more

resources to a single server)

Horizontal Scaling (adding more

instances of services)

Resource Utilization
Often inefficient, as scaling requires

duplicating the entire application

More efficient, as only the necessary

services are scaled

Vol-10 Issue-3 2024 IJARIIE-ISSN(O)-2395-4396

24340 www.ijariie.com 5793

Attribute Monolithic Architecture Microservices Architecture

Example

Scaling a monolithic e-commerce

application means increasing the

resources (CPU, memory) for the

whole application, even if only the

product search functionality needs

more capacity

Amazon: Scales individual microservices

independently, such as separate services

for product search, payment processing,

and user management

2) Deployment :

Attribute Monolithic Architecture Microservices Architecture

Deployment Unit Single deployment unit Multiple independent deployment units

Frequency
Slower, as the entire application

needs to be redeployed

Faster, as individual services can be

deployed independently

Risk

Higher, because changes in one

part can affect the whole

application

Lower, as changes are isolated to

individual services

Example

Traditional banking systems: Any

update or feature addition requires

the whole system to be

redeployed, increasing the risk of

downtime

Netflix: Continuously deploys updates

to individual microservices without

affecting the entire system, allowing

for rapid feature releases and bug fixes

3) Fault Isolation:

Attribute Monolithic Architecture Microservices Architecture

Failure Impact

Failure in one component can

potentially take down the entire

application

Failures are isolated to the affected

microservices, minimizing the impact on the

overall system

Recovery

More challenging, as diagnosing

and fixing the problem involves

the whole application

Easier, as faults can be isolated, diagnosed,

and fixed within individual services

Example

A failure in the payment

processing module of a monolithic

e-commerce application could

bring down the entire application

Spotify: Uses microservices to ensure that if

the recommendation service fails, it doesn’t

impact the music streaming service, providing

a better user experience despite partial failures

4) Performance :

Attribute Monolithic Architecture Microservices Architecture

Internal Communication

Faster, as all components

communicate within the same

process

Potentially slower, due to network

latency and inter-process

communication

Optimization

Optimizing one part of the

application can be difficult

without affecting others

Individual services can be optimized

independently

Vol-10 Issue-3 2024 IJARIIE-ISSN(O)-2395-4396

24340 www.ijariie.com 5794

Attribute Monolithic Architecture Microservices Architecture

Example

In a monolithic CRM

application, optimizing

database access might require

changes across the whole

application, risking regressions

Uber: Optimizes its ride-matching

service separately from other

services like payments or

notifications, allowing for targeted

performance enhancements without

widespread risk

5) Development and Team Organization:

Attribute Monolithic Architecture Microservices Architecture

Team Structure

Typically organized around

technical layers (e.g., frontend,

backend, database)

Organized around business

capabilities (e.g., product search, user

management)

Development Speed

Slower, as changes in one part

require coordination across the

whole team

Faster, as teams can develop and

deploy their services independently

Example

Traditional ERP systems often

require coordinated efforts from

multiple teams for any significant

change, slowing down

development

Amazon: Uses “two-pizza teams” to

develop individual microservices,

allowing for rapid development and

deployment cycles

III. NETFLIX

1) Background:
Netflix was founded in 1997 and it started as a service for renting DVDs but soon evolved into one of the largest

streaming services in the world. The growth of Netflix had to overcome several technical hurdles chiefly due to its
monolithic architecture. In 2008, Netflix started having major service outages. It couldn't scale its monolithic
architecture that was unable to handle the growing traffic. Then came the decision to explore other architectures,
which led to its own microservices.

Fig. 3. Netflix’s Microservices Architecture

Vol-10 Issue-3 2024 IJARIIE-ISSN(O)-2395-4396

24340 www.ijariie.com 5795

2) Motivations for Transitions: There were several major reasons that made the Netflix move from monolithic

to microservices architecture as follows:

a) Scalability: Since there was a continuous rise in the number of users and the data, the monolithic

architecture could not deal with that effectively. Scaling simply required making a copy of the entire application,

which wasted resources and increased the cost of operations.

b) Resilience: Service outages effected the entire applicatiion when the system was monolithic. Netflix

"wanted an architecture where failures would be isolated so the entire service wouldn't come down because of it.

c) Development Velocity: The monolithic codebase resulted in slow development cycles. Development,

testing, and deployment of features independently were tricky. Therefore the rate at which Netflix could introduce

innovations and new features wasnt as fast as they could.

d) Global Expansion: As it expanded globally, Netflix required an extremely flexible and scalable architecture

that would meet different network conditions in different geographical locations and regional demands.

3) Transition Strategy: Netflix transitioned to microservices from its monolithic architecture in a step-by-step

fashion. The following were the major characteristics of such an approach:

a) Service Decompositions: Netflix initially determined and isolated the major functional areas of its

monolithic application which could be developed as independent microservices. A few of the initial services

included the services for managing users, the movie catalog, and the recommendation engine.

b) API Gateway: The first one was the introduction of an API Gateway to assist in handling communication

between the client and microservices. The gateway performed the function of routing, composition, and also

protocol translation thus enabling the clients to deal with more than one service in a very smooth manner.

c) Decentralized Data Manageement: This is a decentralized manner of managing data. Each of the

microservices manages its database resulting in consistent data and independent services.

d) Automated Deployement and CI/CD: Netflix spent millions on automation in order to cope with

microservices deployment. Continuous Integration and Continuous Deployment pipelines were created. This

facilitated speedy and reliable delivery of changes in code.

e) Monitoring and Logging: With a microservices architecture the level of ;complexity goes manifold. Thus,

Netflix developed an elaborate monitoring and logging apparatus. This provided real insight into real-time

performance. Issues could be brought to light quickly and fixed.

4) Challenges and Solutions: While transitioning, Netflix had to face various issues and developed

pathbreaking solutions for the same:

a) Inter-Service Communication: When handling such a vast array of microservices, the internal

communication among them introduced its own level of complexity. Netflix had to implement and leverage light

weight protocols like REST and later gRPC for effective communication between services. Hystrix, a latency and

fault-tolerance library, helped in developing fault-tolerant services by Netflix.

b) Data Consistency: Data consistency was a major challenge confronting distributed services. For solving

the problems of data replication and consistency, Netflix had to use eventual consistency models with distributed

data stores like Cassandra.

c) Service Discovery: Having a large number of services up and running, it was equally important to find the

right service instances and connect to the right instances. In an effort for service registration and discovering to take

place dynamically in a runtime environment, Netflix developed what is called today as Eureka.

d) Deployment and Versioning: The deployment and versioning of microservices called for keen planning.

Docker containers, along with Kubernetes for container orchestration, provided an easy way to deploy and scale

services.

e) Security: the inter-service communication and data became very important. Netflix had in place very strict

security measures, from mutual TLS for service to service communication, and coupling this with tight access

controls.

5) Outcomes: The move to microservices brought several significant benefits for Netflix:

Vol-10 Issue-3 2024 IJARIIE-ISSN(O)-2395-4396

24340 www.ijariie.com 5796

Fig. 4. This pie chart compares the resource allocation (e.g., development, maintenance, scaling) before and

after Netflix's transition to microservices

a) Improved Scalability: Microservices allowed Netflix to scale components individually, thus achieving

increased efficiencies in the utilization of resources and improved performance under high loads.

b) Enhanced Resilience: The microservice architecture increased resiliency of the systems at Netflix. The

failure of a service did not affect the entire application. This meant that Netflix had increased availability and

reliability for its services.

c) Faster Development Cycles: Independent development, testing, and deployment of microservices brought

much faster development cycles to Netflix, and the company could deliver new features and improvements much

more quickly.

d) Global Reach: Microservices flexibility and scalability supported the global reach for Netflix. It was

possible to adapt Netflix services to regional requirements and network conditions in all different places around the

world.

e) Innovation and experimentation: Microservices allowed Netflix to try and experiment with brand new

technologies and methodologies for individual services without jeopardizing the entire system's stability.

6) Lessons Learned: Netflix's journey from a monolith to microservices offers numerous learning points that

the organization can pursue:

a) Incremental Transition: Divide the journey from monolithic to microservices into finite steps to decrease

the risk and more step-by-step learning curve

b) Invest in Automation: Invest in automation deployment, testing, and monitoring since microservices add

more complexity

c) Robust Monitoring: Monitor and log all your services extensively. Without decent monitoring, there's

difficulty in identifying real-time service performance problems.

d) Designed for Failure: Both designing and building resilience into the architecture from the very beginning

helps graceful handling of failures.

e) Decentralize Decision Making: Decentralize decision making empowers the teams that are managing

different services to take their decisions.

IV. CONCLUSION

The transition from monolithic to microservices architecture represents a significant evolution in software
design and development. This shift addresses many of the limitations inherent in monolithic systems, such as
scalability, maintainability, and deployment challenges. Through the decomposition of applications into smaller,
independent services, microservices architecture offers enhanced scalability, resilience, and flexibility, enabling
organizations to innovate and respond to changing market demands more effectively.

The detailed case study of Netflix illustrates the practical benefits and challenges associated with transitioning
to microservices. Netflix’s experience highlights several critical factors for successful implementation, including
the importance of incremental adoption, strong DevOps culture, robust monitoring and logging, and effective API
management. These insights provide valuable guidance for other organizations considering a similar transition.

The literature review further underscores the advantages and complexities of microservices architecture,
drawing on comparisons with monolithic systems and examining case studies from industry leaders like Amazon,
Uber, and Spotify. The findings emphasize that while microservices offer significant improvements in development
agility and system resilience, they also require sophisticated management practices to handle the increased
complexity of distributed systems.

Vol-10 Issue-3 2024 IJARIIE-ISSN(O)-2395-4396

24340 www.ijariie.com 5797

As the software industry continues to evolve, the adoption of microservices architecture is likely to become
more prevalent. Organizations looking to leverage the benefits of microservices must carefully plan their transition,
adopt best practices, and invest in the necessary tools and cultural shifts to manage the complexities of this
architectural approach. The lessons learned from pioneers like Netflix provide a valuable roadmap for navigating
this transformation and achieving long-term success.

REFERENCES

[1] Brikman, Y. (2016). Microservices at Spotify: Lessons Learned. Retrieved from
https://www.ybrikman.com/writing/2016/04/18/microservices-at-spotify-lessons-learned/

[2] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L. (2017).
Microservices: Yesterday, Today, and Tomorrow. In Present and Ulterior Software Engineering (pp. 195-
216). Springer.

[3] Farquhar, A. (2015). Microservices: Decomposing Applications for Deployability and Scalability. Retrieved
from https://www.infoq.com/articles/microservices-intro

[4] Fowler, M., & Lewis, J. (2014). Microservices: A definition of this new architectural term. Retrieved from
https://martinfowler.com/articles/microservices.html

[5] Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The DevOps Handbook: How to Create World-Class
Agility, Reliability, & Security in Technology Organizations. IT Revolution Press.

[6] Lewis, J., & Fowler, M. (2014). Microservices. Retrieved from
https://martinfowler.com/articles/microservices.html

[7] Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice Architecture: Aligning
Principles, Practices, and Culture. O'Reilly Media, Inc.

[8] Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O'Reilly Media, Inc.

[9] Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, Motivations, and Issues for Migrating to
Microservices Architectures: An Empirical Investigation. IEEE Cloud Computing, 4(5), 22-32.

[10] Thönes, J. (2015). Microservices. IEEE Software, 32(1), 116-116.

[11] Varia, J. (2007). Amazon Web Services: Architecting for the Cloud. Retrieved from
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html

[12] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J. (2015). Large-scale cluster
management at Google with Borg. Proceedings of the Tenth European Conference on Computer Systems.
ACM.

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html

