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摘  要 

本文提出了一种基于主成分分析（PCA）和局部像素分组（LPG）的高效图像去噪方案。为了更好
地保留图像局部结构，将像素及其最近的邻居建模为矢量变量，通过使用基于块匹配的 LPG 从本地窗口中
选择其训练样本。这样的 LPG 过程保证了只有内容相似的样本块在局部统计计算中用于 PCA 变换估计，使
得在 PCA域中的系数收缩以消除噪声之后，图像局部特征可以很好地保留。 LPG-PCA降噪过程再次迭代以
进一步提高降噪性能，并在第二阶段自适应调整噪声水平。基准测试图像的实验结果表明，与最先进的技
术相比，LPG-PCA方法实现了非常有竞争力的去噪性能，特别是在图像精细结构保存方面 

去噪算法。 

在本文中，根据六种不同的图像滤波算法的重建噪声影响图像的能力进行比较。 这些算法的目的是
消除可能通过传输图像而发生的信号中的噪声。 引入了一种新的算法 - 空间中值滤波器，并将其与当前的
图像平滑技术进行了比较。 实验结果表明，该算法与流行的图像平滑算法相当。 另外，引入对该算法的修
改以实现比其他流行技术更精确的重构。 

在本文中，通过使用 LPG（局部像素分组）的 PCA（主成分分析）获得了图像中的噪声去除的有效
算法。这种技术确保了图像局部结构的保存。在这里，像素及其邻居被视为矢量变量，其使用基于块匹配
的 LPG从本地窗口中选择训练样本。这确保只为 PCA 变换选择相似的样本，以便仅在相当程度的降噪的情
况下保留期望的局部特征。 LPG-PCA 算法执行两次以提高图像的质量。第一次迭代将显着消除噪声，第二
次迭代将保留像边缘等图像特征。与 WT（小波变换）不同，LPG-PCA 算法将自适应地调整图像的噪声水
平。几个实验结果表明了该算法的有效性。 

关键词：PCA（主成分分析），LPG（局部像素分组） 
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ABSTRACT 

This paper presents an efficient image denoising scheme by using principal component analysis (PCA) with 

local pixel grouping (LPG). For a better preservation of image local structures, a pixel and its nearest neighbors are 

modeled as a vector variable, whose training samples are selected from the local window by using block matching-

based LPG. Such an LPG procedure guarantees that only the sample blocks with similar contents are used in the local 

statistics calculation for PCA transform estimation, so that the image local features can be well preserved after 

coefficient shrinkage in the PCA domain to remove the noise. The LPG-PCA denoising procedure is iterated one more 

time to further improve the denoising performance, and the noise level is adaptively adjusted in the second stage. 

Experimental results on benchmark test images demonstrate that the LPG-PCA method achieves very competitive 

denoising performance, especially in image fine structure preservation, compared with state-of-the-art Denoising 

algorithms. 

In this paper, six different image filtering algorithms are compared based on their ability to reconstruct noise 

affected images. The purpose of these algorithms is to remove noise from a signal that might occur through the 

transmission of an image. A new algorithm, the Spatial Median Filter, is introduced and compared with the current 

image smoothing techniques. Experimental results demonstrate that the proposed algorithm is comparable to popular 

image smoothing algorithms. In addition, a modification to this algorithm is introduced to achieve more accurate 

reconstructions over other popular techniques. 

In this paper, an effective algorithm for noise removal in an image is obtained by using PCA (principal 

component analysis) with LPG (Local Pixel Grouping). This technique ensures the preservation of image local 

structure. Here the pixels and its neighbors are treated as vector variables whose training samples are selected from 

local windows using block matching based LPG. This ensures only the similar samples are selected for the PCA 

transformation so that the desired local characteristics are only preserved with considerable noise reduction. The 

LPG –PCA algorithm is performed twice to enhance the quality of an image. The first iteration would remove the 

noise considerably and the second iteration would preserve the image features like edges etc. The LPG-PCA algorithm 

will adaptively adjust the noise level of an image unlike WT (Wavelet Transformation). Several experimental results 

show the effectiveness of the proposed algorithm.  

Keywords: PCA (Principal Component Analysis), LPG (Local Pixel Grouping) 

 

CHAPTER 1 – INTRODUCTION 

1.1 Background 

Image analysis can be defined as inspecting images for the intention of recognizing objects and judging their 

importance. Image processing is a technique in which various mathematical procedures are applied to the data. It 

generates an enhanced image which is further useful to perform some of the analysis and detection tasks by human 

beings. Digital Image Processing allow the usage of computers to execute image processing algorithms on digital 

images to fulfil several tasks in acquisition, management, enhancement and pre-processing of images. With the fast 

computers and signal processors available, digital image processing is commonly in use. 

Yves Meyer, Mallat and Albert Cohen [1]developed Wavelet theory, which is one of the most analytical tool 

used in modern areas of technical research: electronics, computers, communications, biology, medicine, astronomy 

and so on. In 1-D and 2-D signal processing, the main applications of wavelet theory are compression and denoising. 

In the first chapter the investigator presents a brief introduction to image denoising and compression, motivation for 

the research work and problem statement.  

Image denoising is one of the important and essential components of image processing. Many scientific data sets 

picked by the sensors are normally contaminated by noise. It is contaminated either due to the data acquisition process, 

or due to naturally occurring phenomenon. There are several special cases of distortion. One of the most prevalent 

cases is due to the additive white gaussian noise caused by poor image acquisition or by communicating the image 

data through noisy channels. Other categories include impulse and speckle noises. The goal of denoising algorithm is 

to remove the unwanted noise while preserving the important signal features as much as possible. Noise elimination 
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introduce artifacts and blur in the images. So, image denoising is still a challenging task for the investigators. Several 

methods are being developed to perform denoising of corrupted images. 

The two fundamental approaches of image denoising are the spatial filtering methods and transform domain 

filtering methods[2]. Spatial filters operate a low-pass filtering on a set of pixel data with an assumption that the noise 

reside in the higher region of the frequency spectrum.[3, 4] Spatial low-pass filters not only provide smoothing but 

also blur edges in signals and images. Whereas high pass filters improve the spatial resolution, and can make edges 

sharper, but it will also intensify the noisy background. Fourier transform domain filters in signal processing involve 

a trade-off between the signal-to-noise ratio (SNR) and the spatial resolution of the signal processed. Using Fast 

Fourier Transform (FFT), the denoising method is basically a low pass filtering procedure, in which edges of the 

denoised image are not as sharp as it is in the original image[5]. Due to FFT basis functions the edge information is 

extended across frequencies, which are not being localized in time or space. Hence low pass-filtering results in the 

spreading of the edges. Wavelet theory, due to the advantage of localization in time and space, results in denoising 

with edge preservation. The success of denoising technique is ensured by the ability of de-correlation (separation of 

noise and useful signal) of the different discrete wavelet transform coefficients. As the signal is contained in a small 

number of coefficients of such a transform, all other coefficients essentially contain noise. By filtering these 

coefficients, most of the noise is eliminated. 

Currently there is a large proliferation of digital data. Multimedia is an evolving method of presenting many 

types of information[6, 7]. Multimedia combines text, sound, pictures and animation in a digital format to relate an 

idea. In future multimedia may be readily available as newspapers and magazines. The multimedia and other types of 

digital data require large memory for storage, high bandwidth for transmission and more communication time. The 

only means to get better on these resources is to compress the data size, so that it can be transmitted quickly and 

followed by decompression at the receiver. Another most significant and booming applications of the wavelet 

transform is image compression. More popular and efficient existing wavelet-based coding standards like JPEG2000 

can easily perform better than conventional coders like Discrete Cosine Transform (DCT) and JPEG. Unlike in DCT 

based image compression, the effectiveness of a wavelet-based image coder depends on the choice of wavelet 

selection. However, different categories of images like medical images, satellite images and scanned documents do 

not have the same statistical properties as photographic images. The standard wavelets employed in image coders 

often do not match such images, resulting in lower compression and picture quality. It is significant to identify a 

specially adapted wavelet for non-photographic images. The goal of compression algorithm is to eliminate redundancy 

in the data i.e. the compression algorithms calculate which data is to be considered to recreate the original image along 

with the data to be removed. 

1.2  MOTIVATION FOR THE RESEARCH WORK 

After the development of continuous wavelet transform by Morlet and Grossman, many wavelet transforms 

(WT) have been extended their usage in image processing applications like de-noising. Wavelets are mathematical 

tools that decompose the data into number of different frequency components, and then studying each component with 

good resolution, matched to its scale. Wavelet transforms have advantages over traditional Fourier methods in 

analyzing the signal containing discontinuities and sharp spikes [8]. Basically, wavelet transforms are classified into 

continuous wavelet transform and discrete wavelet transform[9]. The digital signal processors and computes are 

discrete in nature, image processing algorithms use discrete wavelet transform. Wavelets perform a better-quality in 

image denoising, due to the sparsity and multiresolution properties. Each wavelet-based image denoising method 

follow three steps: 

1) Computing a linear forward wavelet transform of the image to be DE noised, 

2) Filtering with nonlinear thresholding in the wavelet domain. 

3) Computing a linear inverse wavelet transform. 

In signal denoising, wavelet thresholding suggested by Donoho, is a signal identification technique that make use 

of the properties of wavelet transform. Coefficients that are insignificant relative to some threshold can be eliminated 

by thresholding. The choice of a thresholding parameter determines the effectiveness of denoising algorithm. Even 

though the Discrete Wavelet Transform (DWT) is a powerful tool, it suffers with three limitations (shift sensitivity, 

poor directionality and absence of phase information), which decreased its usage in many applications. DWT is shift 

sensitive because it produces unpredictable changes in DWT coefficients if input signal is shifted. Next, the DWT 

undergo poor directionality because DWT coefficients unveil only three orientations (horizontal, vertical and 

diagonal). Last, absence of phase information because DWT investigation of non-stationary signals lacks the phase 

information.[10]proposed a redundant complex wavelet transform to avoid the above limitations in standard DWT. A 
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Dual-Tree Wavelet Transform (DTWT) with good directionality, approximate shift sensitivity and explicit phase 

information perform in excellence where redundancy is acceptable. In DTWT a pair of filter banks operate 

simultaneously on the input signal and furnish two wavelet decompositions. The wavelets related with filter banks 

form a Hilbert Transform (HT) pair and provides shift insensitivity, good directionality and explicit phase information. 

However, the design of DTWT filters is complex because it requires an iterative optimization over the space of ideal 

reconstruction filter banks. A thorough study and interest in later years showed pathway for usage of complex 

wavelets, and complex analytic signals particularly in signal processing and statistical applications. Further it is linked 

to the expansion of complex-valued discrete wavelet filters and intelligent dual filter banks. Finally, the complex 

wavelet transforms, directional wavelet transforms, analytic wavelets, steerable pyramids, curvelets and contourlets 

are intelligent and powerful redundant tools applied to signal and image analysis. 

Based on the above study, it is inferred that the transform domain is better suited for image analysis.[11] A novel 

complex wavelet transforms(CWT) can be used for analyzing and identifying the objects in image processing 

applications like image denoising, compression and segmentation. Investigation results illustrate that complex wavelet 

transforms outperform the standard real wavelet transforms in the sense of shift-insensitivity, directionality and anti-

aliasing. These features have motivated to develop Diversity Enhanced Wavelet Transform (DEDWT), Dual-Tree 

Complex Wavelet Transform (DTCWT), and Hyper Analytic Wavelet Transform (HWT) based image denoising 

methods and Huffman coding based DTCWT image compression. 

1.3  PROBLEM  STATEMENT 

The main aim behind this thesis is estimating the recovered image from the distorted or noisy image. Though 

many denoising algorithms have been published, there is scope for improvement! One of the objectives of the current 

research work is to show that the proposed denoising algorithms based upon DWT, can be applied successfully to 

enhance the characteristics of noisy images by the proper selection of filtering and thresholding methods. The 

advantages of Complex Wavelet Transform and Hyper Analytic Wavelet Transform over real standard wavelet 

transforms provides more scope in the areas of image denoising and image compression[12]. 

The second objective of the present work, is extending the DWT implementation to Diversity Enhanced 

DWT. Denoising algorithms are implemented with various filtering methods[13]. A new version of Hyper Analytic 

Wavelet Transform (HWT) is implemented with a zero-order wiener filtering for image analysis. In the proposed 

HWT based method the following are the advantages of HWT. With these advantages, it is useful in denoising the 

corrupted images. 

1) It allows usage of multi wavelets compared to Complex Wavelet Transform (DTCWT) where a set 

of predefined analysis and synthesis filters are used. 

2) Good directionality 

3) Quasi Shift invariance 

The other objective of the work is to analyze how the Dual-Tree Complex Wavelet Transform can be applied 

with Huffman coding in image compression. The performance evaluation of different algorithms is based on metrics 

like Peak Signal to Noise Ratio (PSNR), Root Mean Square Error (RMSE), Compression Ratio (CR), Bits Per Pixel 

(BPP) etc., 
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CHAPTER 2 – The BASIC Theory of  IMAGE DENOISING  

2.1 Introduction 

There has been a significant amount of work done on image denoising techniques. Existing methods are able to 

produce good results in many practical scenarios. The various denoising techniques are as follows: Tables 2.1 shows 

the SNR (signal to noise ratio) of the input and output images for the filtering approach. It shows how SNR varies 

with different type of noise and filters used. 

Table 2.1: SNR values for filtering approach 

Method SNR of input image SNR of output image Noise type and variance 

Mean filter 18.88 27.43 Salt and pepper, 0.05 

Mean filter 13.39 21.24 Gaussian, 0.05 

LMS adaptive filter 18.88 28.01 Salt and pepper, 0.05 

LMS adaptive filter 13.39 22.40 Gaussian, 0.05 

Median filter 18.88 47.97 Sal and pepper, 0.05 

Median filter 13.39 22.79 Gaussian, 0.05 

 

2.2 Spatial Filtering 

A traditional way to remove noise from image data is to employ spatial filters. Spatial filtering is commonly 

used to clean up the output of lasers, removing aberrations in the beam due to imperfect, dirty or damaged optics. 

Spatial filters can be further classified into non-linear and linear filters. 
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A spatial filter is essentially a beam converging device coupled with a filter. The filter, or pinhole is used to 

remove interference patterns in a laser beam caused by diffraction from dust, lint, lens imperfections, etc. that are part 

of any laser optical system. Diffraction interference degrades the laser beam by producing phase and amplitude 

variations or modulation on the otherwise Uniphase laser phase leading to Fresnel zone patterns in the beam[14]. The 

interference is removed from the beam in the following manner the laser output appears as a point source at infinity; 

however; the interference producing sources appear as Huygens generators a finite distance from the filter due to the 

difference in the point of origin, focusing the beam will produce an image of the “source” with all the “noise” or 

interference, defocused in an annulus around the focused beam at the pinhole; therefore, the focused beam will pass 

through the pinhole and the interference will be severely attenuated. Attenuations of 40dB or greater are readily 

produced by this filtering method. 

The optimum pinhole diameter is a function of the laser wavelength, laser beam diameter and focal length of the 

microscope objective used[15]. They are related by 

                  𝑃𝑖𝑛ℎ𝑜𝑙𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 8

𝜋
 𝑥 

𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ  𝑥 𝐹𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝐵𝑒𝑎𝑚 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
                                        (2.1) 

Applying the above formula, we can match commercially available pinhole sizes and objectives for spatial 

filtering purposes. Common helium-neon (HeNe) lasers have a wavelength of 0.6328µm and a beam diameter of 

1mm, and using these parameters gives the following selection table 2.2: 

 

 

 

 

 

Table 2.2: Pinhole sizes and objectives 

Pinhole diameter Objective Focal length 

50 µm 5x 25.5mm 

25 µm 10x 14.8mm 

15 µm 20x 8.3mm 

10 µm 40x 4.3mm 

5 µm 60x 2.9mm 

In practice, a slightly larger pinhole size is preferable to one smaller than the calculated optimum size; this is 

reflected in the pinhole sizes above. In addition, the actual working distance between the objective and the pinhole is 

quite a bit smaller than the focal lengths listed above. The Spatial Filtering Procedure is shown as follow: 

1) Before attaching the magnetic pinhole mount (PM) to the micrometer spindles, mount the appropriate 

microscope objective (MO) onto the spatial filter unit; then align the MO so that it is as close to the laser beam axis 

as possible. This will reduce aberrations, provide optimum light economy, and ease alignment of the pinhole. 

2) Use the z-axis adjustment micrometer to move the MO as far away as possible from the x and y micrometer 

spindles. 

3) Carefully remove the PM from its storage box, holding it by its integral handle. Do not touch the flat pinhole 

substrate under any circumstances. Attach the PM first to the vertical y-axis spindle making sure the machined in on 

the PM is against the side of the spindle opposite the MO then slide the PM towards the horizontal x-axis spindle. 

Before releasing the PM, make sure it is attached squarely onto both spindles. 
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4) While observing the output side of the PM, adjust the x and y-axes until a faint light spot is seen; be careful 

not to look straight into the output: always look from an angle. Place a white card near the output and adjust the x and 

y-axes for maximum output. 

5) Slowly bring the MO closer in towards the PM with z-axis control; the output will probably drift a bit, so use 

the x and y controls to keep the output centered and symmetric. As the focal point of the MO is brought closer-to-the 

pinhole location the output will become brighter and more sensitive to adjustments. 

6) Continue alternate z and x, y adjustments until the output is a smooth speckle pattern; it should look 

symmetric (round) with very faint or no ring patterns around it. shown in fig 2.1 

 

 

   Fig 2.1: Objectives/pinhole spatial filter 

2.3 Linear Filters 

Linear filters process time-varying input signals to produce output signals, subject to constraint of linearity. A 

mean filter is the optimal linear filter for Gaussian noise in the sense of mean square error[16]. Linear filters too tend 

to blur sharp edges, destroy lines and other fine image details, and perform poorly in the presence of signal-dependent 

noise. The wiener filtering method requires the information about the spectra of the noise and the original signal and 

it works well only if the underlying signal is smooth. Wiener method implements spatial smoothing and its model 

complexity control correspond to choosing the window size.  

A linear filter is an operation L which transforms a time series X = {X(t) into another time series Y = {Y (t)},   

Y (t) = L X (t), t ∈ Z.                                                      (2.2) 

Let E be the space of all stationary processes. A linear time invariant filter L is a function 

                                    𝐿: ℇ → ℰ                                                                     (2.3) 

that has the following three properties: 

1)Scale preservation 

                       L (α X) = α L(X)                                                                (2.4) 

2)Superposition 

         L (X1 + X2) = L(X1) + L(X2)                                                (2.5) 

3)Time invariance 

                 L Bk X = Bk L X for all k ∈ Z                                            (2.6) 

where B is the backshift operator ((BX)(t) = X (t − k)). 

Smoothing filter:     𝑌(𝑡) = 1

4
𝑋(𝑡 + 1) + 1

2
𝑋(𝑡) + 1

4
𝑋(𝑡 − 1)                                             (2.7) 

 Differencing filter:       Y (t) = X(t) − X (t − 1)                                                                   (2.8)                                                                               
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2.4 Mean Filter 

A mean filter acts on an image by smoothing it; that is, it reduces the intensity variation between adjacent 

pixels[18, 19]. The mean filter is nothing but a simple sliding window spatial filter that replaces the center value in 

the window with the average of all the neighboring pixel values including itself. Image corrupted with salt and pepper 

noise is subjected to mean filtering and it can be observed that the noise dominating is reduced. The white and dark 

pixel values of the noise are changed to be closer to the pixel values of the surrounding ones. Also, the brightness of 

the input image remains unchanged because of the use of the mask, whose coefficients sum up to the value one. The 

mean filter is used in applications where the noise in certain regions of the image needs to be removed. In other words, 

the mean filter is useful when only a part of the image needs to be processed. 

2.5  LMS Adaptive Filter  

Adaptive filters are capable of denoising non-stationary images, that is, images that have abrupt changes in 

intensity. Such filters are known for their ability in automatically tracking an unknown circumstance or when a signal 

is variable with little a priori knowledge about the signal to be processed. An adaptive filter does a better job of 

denoising images compared to the averaging filter as the Least Mean Square (LMS) adaptive filter is known for its 

simplicity in computation and implementation. The LMS adaptive filter works well for images corrupted with salt and 

pepper type noise. But this filter does a better denoising job compared to the mean filter. 

The earliest work on adaptive filters may be traced back to the late 1950s, during which time a number of 

researchers were working independently on theories and applications of such filters. From this early work, the least-

mean-square (LMS) algorithm emerged as a simple, yet effective, algorithm for the design of adaptive transversal 

(tapped-delay-line) filters. The LMS algorithm was devised by Widrow and Hoff in 1959 in their study of a pattern-

recognition machine known as the adaptive linear element, commonly referred to as the Adaline [21, 22]. The LMS 

algorithm is a stochastic gradient algorithm in that it iterates each tap weight of the transversal filter in the direction 

of the instantaneous gradient of the squared error signal with respect to the tap weight in question. Let w^(n) denote 

the tap-weight vector of the LMS filter, computed at iteration (time step) n. The adaptive operation of the filter is 

completely described by the recursive equation (assuming complex data) 

                         𝑤̂(𝑛 + 1) =  𝑤̂ (𝑛) +  𝜇𝑢(𝑛)[𝑑(𝑛) − 𝑤̂𝐻(𝑛)𝑢(𝑛)]∗,                                (2.39) 

 

where u(n) is the tap-input vector, d(n) is the desired response, and m is the step-size parameter. The quantity enclosed 

in square brackets is the error signal. The asterisk denotes complex conjugation, and the superscript H denotes 

Hermitian transposition (i.e., ordinary transposition combined with complex conjugation). Eq (2.36) [23]is testimony 

to the simplicity of the LMS filter. This simplicity, coupled with desirable properties of the LMS filter (discussed in 

the chapters of this book) and practical applications[5, 24] ,has made the LMS filter and its variants an important part 

of the adaptive signal processing kit of tools, not just for the past 40 years but for many years to come. Simply put, 

the LMS filter has withstood the test of time. Although the LMS filter is very simple in computational terms, its 

mathematical analysis is profoundly complicated because of its stochastic and nonlinear nature. Indeed, despite the 

extensive effort that has been expended in the literature to analyze the LMS filter, we still do not have a direct 

mathematical theory for its stability and steady-state performance, and probably we never will. Nevertheless, we do 

have a good understanding of its behavior in a stationary as well as a nonstationary environment, as demonstrated in 

the chapters of this book. The stochastic nature of the LMS filter manifests itself in the fact that in a stationary 

environment, and under the assumption of a small step-size parameter, the filter executes a form of Brownian motion. 

Specifically, the small step-size theory of the LMS filter is almost exactly described by the discrete-time version of 

the Langevin equation1: 

△ 𝑉𝑘(𝑛) = 𝑉𝑘(𝑛 + 1) − 𝑉𝑘(𝑛) 

    = −𝜇𝜆𝑘𝑉𝑘(𝑛) + Φ𝑘(𝑛),  k=1,2,…,M                                  (2.40)                     

Which is naturally split into two parts: a damping force −𝜇𝜆𝑘𝑉𝑘(𝑛) and a stochastic force Φ𝑘(𝑛). The terms used 

herein are defined as follow: 

M = order (i.e., number of taps) of the transversal filter around which the LMS filter is built 

𝜆𝑘 = kth eigenvalue of the correlation matrix of the input vector u(n), which is denoted by R 

Φ𝑘(𝑛) = kth component of the vector −𝜇𝑄𝐻𝑢(𝑛)𝑒𝑜
∗(𝑛)  

Q = unitary matrix whose M columns constitute an orthogonal set of eigenvalues of the correlation matrix R 

𝑒𝑜
∗(𝑛) = optimum error signal produced by the corresponding Wiener filter driven by the input vector u(n) and the 

desired response d(n) 
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To illustrate the validity of Eq. (2.37) as the description of small step-size theory of the LMS filter, we present 

the results of a computer experiment on a classic example of adaptive equalization. The example involves an unknown 

linear channel whose impulse response is described by the raised cosine [25] 

                                         ℎ𝑛 = {
1

2
[1 cos(2𝜋

𝑊(𝑛−2))], 𝑛 = 1,2,3

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                           (2.41) 

where the parameter W controls the amount of amplitude distortion produced by the channel, with the distortion 

increasing with W. Equivalently, the parameter W controls the eigenvalue spread (i.e., the ratio of the largest 

eigenvalue to the smallest eigenvalue) of the correlation matrix of the tap inputs of the equalizer, with the eigenvalue 

spread increasing with W. The equalizer has M ¼ 11 taps. Figure 1 presents the learning curves of the equalizer trained 

using the LMS algorithm with the step-size parameter m ¼ 0:0075 and varying W. Each learning curve was obtained 

by averaging the squared value of the error signal eon Þ versus the number of iterations n over an ensemble of 100 

independent trials of the experiment. The Fig2.1Learning curves of the LMS algorithm applied to the adaptive 

equalization of a communication channel whose impulse response is described by Eq. (2.38) for varying eigenvalue 

spreads: Theory is represented by continuous well-defined curves. Experimental results are represented by fluctuating 

curves. 

2.6 Non-Linear  Filters 

An alternative approach to preserving edges while smoothing noise is to think of a filter as a statistical estimator. 

In particular, the goal here is to estimate the actual image value at a pixel, in the presence of noisy measurements. This 

view leads us to a class of filters that are hard to analyze but can be extremely useful[26]. 

Smoothing an image with a symmetric Gaussian kernel replaces a pixel with some weighted average of its 

neighbors. If an image has been corrupted with stationary additive zero-mean Gaussian noise, then this weighted 

average gives a reasonable estimate of the original value of the pixel. The expected noise response is zero, and the 

estimate has better behavior in terms of spatial frequency than a simple average. 

 

Fig 2.2  Expected Noise Response 

On the left, a black background with white noise pixels distributed as a Poisson point process. These pixels are 

outliers, in the sense that they differ radically from their neighboring pixels. In the center image, we see the result of 

estimating pixels as the response of the image to a Gaussian filter with σ one pixel; we are estimating a pixel value as 

a weighted sum of its neighbors. Because the noise pixels are wildly different from their neighborhood, they skew this 

estimate substantially[27]. In the right-hand image, we see the result of using a Gaussian filter with σ two pixels; the 

effect remains, but is smaller, because the effective support of the filter is larger. However, if the image noise is not 

stationary additive Gaussian noise, difficulties arise. For example, consider a noise model where image points are set 

to the brightest or darkest possible value with a Poisson point process. In particular, consider a region of the image 

which has a constant dark value and there is a single bright pixel due to noise — smoothing with a Gaussian will leave 

a smooth, Gaussian-like, bright bump centered on this pixel. 

The problem here is that a weighted average can be arbitrarily badly affected by very large noise values. Thus, 

in our example, we can make the bright bump arbitrarily bright by making the bright pixel arbitrarily bright — perhaps 

as result of, say, a transient error in reading a memory element. Estimators that do not have this most undesirable 

property are often known as robust estimates. The best-known robust estimator involves estimating the mean of a set 

of values using its median. For a set with 2k +1 elements, the median is the k +1’th element of the sorted set of values. 
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For a set with 2k elements, the median is the average of the k and the k + 1’th element of the sorted set. It does not 

matter whether the set is sorted in increasing or decreasing order (exercises!). 

2.7 Median filter 

A median filter is specified by giving some form of neighborhood shape (which can significantly affect the 

behavior of the filter). This neighborhood is passed over the image as in convolution, but instead of taking a weighted 

sum of elements within the neighborhood, we take the media[28] 

 

Fig 2.3: Neighborhood Shape 

 

In fig 2.4, The columns on the left show Poisson noise processes of different intensities; on the top row, there are 

2000 noise pixels and on the bottom row, 20000. The second column shows the effect of applying a filter that returns 

the median of a 3x3 neighborhood to these images, and the third column shows the effect of applying a filter that 

returns the median of a 7x7 neighborhood to these images. Notice that, if the noise is intense, then the median filter is 

unable to suppress it. If we write the neighborhood centered at i, j as𝑁𝑖𝑗, the filter can be described by: 

                                             𝑦𝑖𝑗 = 𝑚𝑒𝑑({𝑋𝑢𝑣|𝑋𝑢𝑣  ∈  𝑁𝑖𝑗})                                                    (2.42) 

Applying a median filter to our example of a uniform dark region with a single, arbitrarily bright, pixel will yield a 

dark region. In this example, up to half of the elements in the neighborhood could be noise values and the answer 

would still be correct. It is difficult to obtain analytic results about the behavior of median filters, but a number of 

general observations apply[27]. 

Median filters preserve straight edges but tend to behave badly at sharp corners fig2.4. This difficulty is usually 

dealt with by forming a multi-stage median filter; this filter responds with the median of a set of different medians, 

obtained in different neighborhoods: 

 

Fig 2.4  Salt and Pepper Noise Multi-Stage Median Filter 

On the left, an image corrupted with salt-and-pepper noise (points are chosen by a Poisson process, and then with 

even probability marked either black or white; in this image, about 9% of the pixels are noise pixels). Gaussian 

smoothing (center left shows σ one pixel and center shows σ two pixels) works particularly poorly, as the contrast 

makes the dark regions left behind by averaging in dark pixels very noticeable. A median filter is much more successful 
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(center right shows a 3x3 median filter and right shows a 7x7 median filter). Notice how the median filter blurs 

boundaries. 

 

Fig 2.5 Median Filter Neighborhood Support 

On the left of fig 2.6, a detail from the figure of vegetables; in the center the result of applying a median filter 

with a 7x7 neighborhood of support. Notice that the texture of the broccoli florets is almost completely smoothed 

away, and that corners around the red cabbage have been obscured. These effects could be useful in some contexts but 

reduce the usefulness of the filter in suppressing long-tailed noise because they represent a reduction in image detail, 

too. On the right, the result of applying a multistage median filter, using 7-pixel domains that are horizontal, vertical, 

and along the two diagonals. Significantly less detail has been lost. 

While median filters tend to be better than linear filters at rejecting very large noise values so called outliers, they 

tend to be poorer than linear filters at handling noise that does not have outliers. In jargon, noise that can produce 

occasional large values is often called long-tailed noise, because the probability density for the noise values has “long 

tails” there is significant weight in the density far from the mean; similarly, noise that does not have this property is 

often called short-tailed noise. In a neighborhood, long-tailed noise will produce a small number of very large values, 

which tend not to affect the median much; however, short-tailed noise will produce values that are similar to the 

original pixel value and which will affect the median more. This difficulty can be handled either by using an α-trimmed 

linear filter where α/2 percent of the largest and smallest values in a neighborhood are removed from consideration 

and the rest are subjected to a linear filter or by using a hybrid median filter where the output is the median of a set of 

linear filters over a neighborhood[29]. 

 

Fig 2.6  Hybrid Median Filter 

On the left of fig 2.6, a binary image; a natural strategy for removing small groups of dark pixels is to lighten all 

pixels that do not lie at the center of a 3x3 dark neighborhood. This process is known as erosion. In the center, the 

relevant pixels have been greyed. Similarly, we could fill in small gaps by marking all pixels such that a 3x3 

neighborhood around the pixel contacts a dark pixel, a process known as dilation. The relevant pixels have been greyed 

on the right. 

Median filters can be extremely slow. One strategy is to pretend that a median filter is separable and apply separate 

x and y median filters. The best-known order-statistics filter is the median filter, which, as its name implies, replaces 

the value of a pixel by the median of the gray levels in the neighborhood of that pixel: 

                                     𝑓(𝑥, 𝑦) = median
(𝑠.𝑡)𝜀𝑆𝑥𝑦

{𝑔(𝑠, 𝑡)}                                    (2.43) 
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The original value of the pixel is included in the computation of the median. Median filters are quite popular 

because, for certain types of random noise, they provide excellent noise-reduction capabilities, with considerably less 

blurring than linear smoothing filters of similar size. Median filters are particularly effective in the presence of both 

bipolar and unipolar impulse noise. In fact, as Example above shows, the median filter yields excellent results for 

images corrupted by this type of noise.  

Although the median filter is by far the order-statistics filter most used in image processing.it is by no means the 

only one. The median represents the 50th percentile of a ranked set of numbers, but the reader will recall from basic 

statistics that ranking lends itself to many other possibilities. For example, using the 100th percentile results in the so-

called max filter given by: 

                                  𝑓(𝑥, 𝑦) = max
(𝑠.𝑡)𝜀𝑆𝑥𝑦

{𝑔(𝑠, 𝑡)}                                           (2.44) 

This filter is useful for finding the brightest points in an image. Also, because pepper noise has very low values, it 

is reduced by this filter as a result of the max selection process in the sub image area S. The 0th percentile filter is the 

Min filter. 

                                        𝑓(𝑥, 𝑦) = min
(𝑠.𝑡)𝜀𝑆𝑥𝑦

{𝑔(𝑠, 𝑡)}                                         (2.45) 

2.8 A Modified Spatial Median Filter 

The Spatial Median Filter is similar to the Vector Median Filter in that in both filters, the vectors are ranked by 

some criteria and the top-ranking point is used to the replace the center point. No consideration is made to determine 

if that center point is original data or not. The unfortunate drawback to using these filters is the smoothing that occurs 

uniformly across the image[30]. Across areas where there is no noise, original image data is removed unnecessarily 

in the Modified Spatial Median Filter, after the spatial depths between each point within the mask are computed, an 

attempt is made to use this information to first decide if the mask’s center point is an uncorrupted point. If the 

determination is made that a point is not corrupted, then the point will not be changed. We first calculate the spatial 

depth of every point within the mask and then sort these spatial depths in descending order. The point with the largest 

spatial depth represents the Spatial Median of the set. In cases where noise is determined to exist, this representative 

point then replaces the point currently located under the center of the mask. The point with the smallest spatial depth 

will be considered the least similar point of the set[31]. 

By ranking these spatial depths in the set in descending order, a spatial order statistic of depth levels is created. 

The largest depth measures, which represent the collection of uncorrupted points, are pushed to the front of the ordered 

set. The smallest depth measures, representing points with the largest spatial difference among others in the mask (and 

possibly the most corrupted points), are pushed to the end of the list. We can prevent some of the smoothing by looking 

for the position of the center point in the spatial order statistic list. Let us consider a parameter T (where 1 ≤ T ≤ mask 

size)[32], which represents the estimated number of original points under a mask of points. As stated earlier, points 

with high spatial depths (and supposedly uncorrupted points) are at the beginning of the list. Pixels with low spatial 

depths appear at the end. If the position of the center mask point appears within the first T bins of the spatial order 

statistic list, then we can argue that while the center point is not the best representative point of the mask, it is still 

original data and should not be replaced. 

Two things should be noted about the use of T in this approach. When T is 1, this is the equivalent to the 

unmodified Spatial Median Filter. When T is equal to the size of the mask, the center point will always fall within the 

first T bins of the spatial order statistic and every point is determined to be original. This is the equivalent of performing 

no filtering at all since all of the points are left unchanged[33]. The algorithm to detect the least noisy point depends 

on a number of conditions. First, the uncorrupted points should outnumber, or be more similar, to the corrupted points. 

If two or more similar corrupted points happen in close proximity, then the algorithm will interpret the occurrence as 

original data and maintain the corrupted portions. While T is an estimation of the average number of uncorrupted 

points under a mask of points, the experimental testing made no attempt to measure the impulse noise composition of 

an image prior to executing the filter. 

2.9 Wavelet Transform 

The wavelet transform is similar to the Fourier transform (or much more to the windowed Fourier transform) with 

a completely different merit function[34]. The main difference is this: Fourier transform decomposes the signal into 

sines and cosines, i.e. the functions localized in Fourier space; in contrary, the wavelet transform uses functions that 
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are localized in both the real and Fourier space. Generally, the wavelet transform can be expressed by the following 

equation 

                                      𝐹(𝑎, 𝑏) = ∫ 𝑓(𝑥)𝜓(𝑎,𝑏)
∗ (𝑥)𝑑𝑥

∞

−∞
                                                 (2.46) 

where the * is the complex conjugate symbol and function ψ is some function. This function can be chosen arbitrarily 

provided that it obeys certain rules. 

As it is seen, the Wavelet transform is in fact an infinite set of various transforms, depending on the merit function 

used for its computation. This is the main reason, why we can hear the term “wavelet transform” in very different 

situations and applications. There are also many ways how to sort the types of the wavelet transforms. Here we show 

only the division based on the wavelet orthogonality. We can use orthogonal wavelets for discrete wavelet transform 

development and non-orthogonal wavelets for continuous wavelet transform development. These two transforms have 

the following properties: 

The discrete wavelet transform returns a data vector of the same length as the input is. Usually, even in this vector 

many data are almost zero. This corresponds to the fact that it decomposes into a set of wavelets (functions) that are 

orthogonal to its translations and scaling. Therefore, we decompose such a signal to a same or lower number of the 

wavelet coefficient spectrum as is the number of signal data points. Such a wavelet spectrum is very good for signal 

processing and compression, for example, as we get no redundant information here. 

The continuous wavelet transform in contrary returns an array one dimension larger than the input data. For a 1D 

data we obtain an image of the time-frequency plane. We can easily see the signal frequencies evolution during the 

duration of the signal and compare the spectrum with other signals spectra. As here is used the non-orthogonal set of 

wavelets, data are highly correlated, so big redundancy is seen here. This helps to see the results in a more humane 

form. 

The discrete wavelet transforms (DWT) are an implementation of the wavelet transform using a discrete set of 

the wavelet scales and translations obeying some defined rules. In other words, this transform decomposes the signal 

into mutually orthogonal set of wavelets, which is the main difference from the continuous wavelet transform (CWT), 

or its implementation for the discrete time series sometimes called discrete-time continuous wavelet transform (DT-

CWT)[5]. 

The wavelet can be constructed from a scaling function which describes its scaling properties. The restriction 

that the scaling functions must be orthogonal to its discrete translations implies some mathematical conditions on them 

which are mentioned everywhere, e.g. the dilation equation 

                                                𝜙(𝑥) = ∑ 𝑎𝑘
∞
𝑘=−∞ 𝜙(𝑆𝑥 − 𝑘)                                                (2.47) 

where S is a scaling factor (usually chosen as 2). Moreover, the area between the function must be normalized and 

scaling function must be orthogonal to its integer translations, i.e. 

                                            ∫ 𝜙(𝑥)𝜙(𝑥 + 𝑙)𝑑𝑥
∞

−∞
= 𝛿0,𝑙                                                        (2.48) 

After introducing some more conditions (as the restrictions above does not produce a unique solution) we can obtain 

results of all these equations, i.e. the finite set of coefficients ak that define the scaling function and also the wavelet. 

The wavelet is obtained from the scaling function as N where N is an even integer. The set of wavelets then forms an 

orthonormal basis which we use to decompose the signal. Note that usually only few of the coefficients ak are nonzero, 

which simplifies the calculations. There are several types of implementations of the DWT algorithm. The oldest and 

most known one is the Mallat (pyramidal) algorithm. In this algorithm two filters – smoothing and non-smoothing one 

– are constructed from the wavelet coefficients and those filters are recurrently used to obtain data for all the scales. 

If the total number of data D = 2N is used and the signal length is L, first D/2 data at scale L/2N - 1are computed, 

then (D/2)/2 data at scale L/2N - 2, … up to finally obtaining 2 data at scale L/2. The result of this algorithm is an array 

of the same length as the input one, where the data are usually sorted from the largest scales to the smallest ones. 

Within Gwyddion the pyramidal algorithm is used for computing the discrete wavelet transform. Discrete wavelet 

transform in 2D can be accessed using DWT module. Discrete wavelet transform can be used for easy and fast 

denoising of a noisy signal[35]. If we take only a limited number of highest coefficients of the discrete wavelet 

transform spectrum, and we perform an inverse transform (with the same wavelet basis) we can obtain more or less 

denoised signal. There are several ways how to choose the coefficients that will be kept. Within Gwyddion, the 
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universal thresholding, scale adaptive thresholding and scale and space adaptive thresholding is implemented. For 

threshold determination within these methods, we first determine the noise variance guess given by 

                                                             𝜎̂ =
𝑀𝑒𝑑𝑖𝑎𝑛|𝑌𝑖,𝑗|

0.6745
                                                         (2.49) 

where Yij corresponds to all the coefficients of the highest scale sub band of the decomposition (where most of 

the noise is assumed to be present). Alternatively, the noise variance can be obtained in an independent way, for 

example from the AFM signal variance while not scanning. For the highest frequency sub band (universal 

thresholding) or for each sub band (for scale adaptive thresholding) or for each pixel neighborhood within sub band 

(for scale and space adaptive thresholding) the variance is computed as 

𝜎̂𝑌
2 =

1

𝑛2
∑ 𝑌𝑖,𝑗

2

𝑛

𝑖,𝑗=1

 

Threshold value is finally computed as 

                                                            𝑇(𝜎̂𝑋) = 𝜎̂2

𝜎̂𝑋
⁄                                                     (2.50) 

     where 

𝜎̂𝑋 = √max (𝜎̂𝑌
2 − 𝜎̂2, 0)                

When threshold for given, scale is known, we can remove all the coefficients smaller than threshold value (hard 

thresholding) or we can lower the absolute value of these coefficients by threshold value (soft thresholding). 

CHAPTER 3 – Principal Component Analysis Image Denoising with Local Pixel Grouping 

3.1  Principal Component Analysis (PCA) 

Let X= [x1, x2, x3……xm] T denote an m component vector in its transpose form. This is denoted as  

 

                                  𝑋 =

[
 
 
 
 
𝑥1

1 𝑥1
2 ⋯⋯⋯ 𝑥1

𝑛

𝑥2
1 𝑥2

2 ⋯⋯⋯ 𝑥1
𝑛

⋮
⋮

𝑥𝑚
1 𝑥1

1 ⋯⋯⋯ 𝑥𝑚
𝑛 ]
 
 
 
 

                                                          (3.1) 

 

The sample matrix of X where Xij where j=1,2…. n T represent the discrete sample variables of the sample 

vector Xi where i=1,2,3…. m. The mean value of sample vector is calculated as  

                                       𝜇𝜄 =  1

𝑛
∑ 𝑋𝜄 (𝑗)𝑛

𝑗=1                                                                       (3.2) 

Thus, the average value of the pixels is computed using the above equation. The sample vector is modified and 

centralized as follows 

𝑋𝜄 = 𝑋𝜄 – 𝜇𝜄 =  ⟨𝑋𝜄
1|𝑋𝜄

2| … . ……𝑋𝜄
𝑛⟩ 

Finally, we calculate the covariance matrix using the formula 

                                                     Ω =  1

𝑛
 𝑋𝑋𝑇                                                                               (3.3) 
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The goal of PCA is to generate an orthogonal transformation matrix P to de-correlate the matrix such that Y = PX, 

such that the covariance matrix of Y is diagonal[24]. Since the covariance matrix is symmetrical it can be written as  

                                                 Ω =  𝜃∆𝜃𝑇                                                                           (3.4) 

Where Ω is m*m eigenvector matrix and ^ is a diagonal eigenvector matrix. Based on the eigen values the 

orthogonal transformation matrix P is given as 

                                            𝑃 =  𝜃𝑇                                                                                    (3.5) 

Thus, the matrix X can be de-correlated using the orthogonal transformation matrix P as Y=PX 

 

   Fig 3.1   Stage implementation of LPG-PCA Algorithm 

3.2  PCA algorithm with Local Pixel Grouping (LPG) 

Here we assume that the noise (u) in the image is additive, with zero mean and standard deviation σ. Let this 

noise be added to the original image say F. Therefore, the new image value is determined as Fu= F+u. The goal of our 

project is to find an image F1 which is approximately equal to the original image F. Pixels are identified based on the 

spatial coordinates and their grey scale value (intensity value) whereas of different intensity values. Here we assume 

the pixels in local structure as vectors and improvise the edge preservation process. The image F and noise u are 

uncorrelated[24]. For removing noise from an underlying pixel, according to the fig, a K×K matrix centered on the 

pixel and denote by X=[x1,x2…xm]T with total no of elements m=k2. The window is centered on the image X. Since 

the image is prone to noise u we represent the new image vector as Xu=X+u. The noisy image where U=[u1,u2….u 

m]T. The statistical PCA is used on these vectors. To remove the noise from an image the covariance matrix Xu and 

PCA transformation matrix are to be calculated. Therefore, we use a LL training block centered on Xu, such that L×L 

is greater than K×K. From the training block, we need to estimate the required pixels for the PCA. This selection of 

different pixels from training blocks is a complex process and may sometimes leads to inaccurate results. 

Here selecting the training samples similar to the K×K central block from the given L×L training block is 

achieved using block matching based technique. The total number of samples available are (L-K+1)2 training samples 

of Xu in the L×L training window. In the L× L training block, let x0 denote the vector containing sample pixels in the 

center K×K block and xi represent the pixels of (L-K+1)2-I[38]. 

In the 𝑚𝑥𝑛 dataset matrix 𝑋̅𝑢, each component 𝑥𝑘
𝑢 k= 1,2…m, of the vector variable 𝑥𝑢 has n samples. Denote 

by 𝑥𝑘
𝑢  the row vector containing the n samples of 𝑥𝑘

𝑢.  The n the dataset 𝑥𝑢  can be respresented as 

𝑋𝑢=[(𝑋1
𝑢)𝑇 …… (𝑋𝑚

𝑢 )𝑇]𝑇. Similarly, we have X=[𝑋1
𝑇 ………𝑋1

𝑇]𝑇, where 𝑋𝑘 is the row vector containing the n samples 

of  𝑥𝑘 and 𝑋𝑢 = 𝑋 + 𝑉, [39]. Where V =[𝑉1
𝑇 …… . . 𝑉𝑚

𝑇]𝑇. Similarly, is the dataset noise variable u and 𝑉𝑘is the sample 

vector 𝑢𝑘  
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Fig 3.2    Illustration of the modeling of LPG-PCA based denoising 

Next, we centralized a set 𝑋𝑢. The mean value of  𝑋𝑘 
𝑢   is   𝑢𝑘 = ∑ 𝑋𝑘 

𝑢(𝑖)𝑛
𝑖=1  , 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑋𝑘 

𝑢  is centralized by 

𝑋̅𝑘 
𝑢 = 𝑋𝑘 

𝑢 − 𝑢𝑘. Since the noise 𝑢𝑘 𝑖𝑠 Zero-mean, 𝑋𝑘 can also be centralized by 𝑋̅𝑘 = 𝑋𝑢 − 𝑢𝑘. Then centralized of 

𝑋𝑢  and X are obtained  as 𝑋̅𝑢 =[(𝑋̅1
𝑢)𝑇 …… (𝑋̅𝑘𝑚

𝑢
)𝑇]𝑇  and 𝑋̅𝑘  =[𝑋̅𝑘1

𝑇
…… . . 𝑋̅𝑘𝑚

𝑇
]𝑇 , and we have 𝑋̅𝑢 = 𝑋̅ + 𝑉.By 

computing the covariance matrix of 𝑋̅ denoted by Ω𝑥̅ ,then PCA transformation matrix P𝑋̅ can be obtained. Ω𝑥𝑢̅̅ ̅̅ =
1

𝑛
𝑋̅𝑢𝑋̅1

𝑇 ≈
1

𝑛
(𝑋𝑋̅̅ ̅̅ 𝑇 + 𝑋̅𝑉𝑇 + 𝑉𝑋̅𝑇 + 𝑉𝑉̅𝑇) 

Since 𝑋̅ and V are uncorrelated, items 𝑋̅𝑉𝑇 𝑎𝑛𝑑 𝑉𝑋̅𝑇 will benearly zero matrices and thus 

                                         Ω𝑥𝑢̅̅ ̅̅ ≈
1

𝑛
(𝑋𝑋̅̅ ̅̅ 𝑇 + 𝑉𝑉̅𝑇) = Ω𝑥 ̅ + Ω𝑢                                              (3.6) 

Where Ω𝑥 ̅ = (
1

𝑛
) 𝑋𝑋̅̅ ̅̅ 𝑇𝑎𝑛𝑑 Ω𝑥 ̅ = (

1

𝑛
) 𝑉𝑉̅𝑇  , Ω𝑢(𝑖, 𝑗)𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 u𝑖  and u𝑗 . since u𝑖  and u𝑗  are un 

co-related for 𝑖 ≠ 𝑗, we know that Ω𝑢 is a 𝑚 × 𝑚 diagonal matrix with all the diagonal components being 𝜎2. In other 

words, Ω𝑢 can be written as 𝜎2I, where I is identity matrix. Then it can be readily proved that the PCA transformation 

matrix P𝑥 ̅associated with Ω𝑥 ̅ 𝑖𝑠 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑃𝐶𝐴 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑚𝑎𝑡𝑖𝑜𝑛 matrix associated with  Ω𝑥𝑢̅̅ ̅̅  .Since Ω𝑥 ̅ is written as  

                                                                 Ω𝑥 ̅ = ϕ𝑥 ̅ ∧𝑥 ̅ 𝜙𝑥̅
𝑇

                                                            (3.7) 

Whereϕ𝑥 ̅ is the 𝑚 × 𝑚 ∧𝑥 ̅ is the diagonal eigen matrix. Since ϕ𝑥 ̅ is an orthonormal matrix, we can write  

                            Ω𝑢 = (𝜎2𝐼)ϕ𝑥 ̅ϕ𝑥̅
𝑇 = ϕ𝑥 ̅(𝜎

2𝐼)ϕ𝑥̅
𝑇 = ϕ𝑥 ̅ Ω𝑢𝜙𝑥̅

𝑇
 

Thus, we have 

                                     Ω𝑥𝑢̅̅ ̅̅ = Ω𝑥 ̅Ω𝑢 = ϕ𝑥 ̅ ∧𝑥 ̅ ϕ𝑥̅
𝑇 + (𝜎2𝐼)ϕ𝑥 ̅𝜙𝑥̅

𝑇
                                          (3.8) 

                                        =ϕ𝑥 ̅(∧𝑥 ̅+ 𝜎2𝐼)𝜙𝑥̅
𝑇 = ϕ𝑥 ̅(∧𝑥𝑢̅̅ ̅̅ )𝜙𝑥̅

𝑇  

Where 𝑥𝑢̅̅ ̅  = ∧𝑥 ̅  + 𝜎2𝐼. 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 Ω𝑥𝑢̅̅ ̅̅   and Ω𝑥 ̅have the same eigen vector matrix ϕ𝑥 ̅ . Thus, 

impractical implementation we can directly compute ϕ𝑥 ̅ by decomposing Ω𝑥𝑢̅̅ ̅̅ , instead of ϕ𝑥 ̅, 𝑎𝑛𝑑 𝑡ℎ𝑒 ortonormal 

PCA transformation matrix for 𝑋̅ is set as  

                                                     P𝑥 ̅ = 𝜙𝑥̅
𝑇
                                                                           (3.9) 

Applying P𝑥 ̅ to dataset 𝑋𝑢 we have  

                                       𝑌𝑢 
̅̅̅̅ = 𝑃𝑥̅𝑋𝑢

̅̅̅̅ + 𝑃𝑥̅ + 𝑉 = 𝑌̅ + 𝑉𝑦                                                        (3.10) 

Where 𝑌̅ = 𝑃𝑥̅𝑋̅ is the de-correlated dataset for 𝑋̅ and 𝑉𝑦 = 𝑃𝑥̅𝑉 is the transformed noise dataset for V. since 𝑌̅ + 𝑉𝑦 

noise is uncorrelated, we can easily derive that the covariance matrix of 𝑌𝑢 
̅̅̅̅  is  

                                        Ω𝑦𝑢̅̅ ̅̅ = 1

𝑛
𝑌̅𝑢𝑌̅𝑢

𝑇 = Ω𝑦 ̅ + Ω𝑢𝑦
                                                              (3.11) 
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Where Ω𝑦 ̅ =∧𝑥 ̅ is the covariance matrix of de-correlated dataset 𝑌̅ and Ω𝑢𝑦
= P𝑥 ̅Ω𝑢𝑃𝑥̅

𝑇  is the covariance matrix of 

noise dataset 𝑉𝑦 .In the PCA transformed domain 𝑌̅𝑢 , most energy of noiseless dataset 𝑌̅ concentrate on the most 

important components, while the energy of noise 𝑉𝑦 distributes much more evenly. The noise in 𝑌̅𝑢 can be suppressed 

by using linear minimum mean square-error estimation (LMMSE) technique. Since 𝑌̅𝑢 is centralized, the LMMSE of 

𝑌̅𝑘, i.e the kth row of 𝑌̅, is obtained as 𝑌̅𝑘
⃑⃑  ⃑̀ = w𝑘 . 𝑌̅𝑢

⃑⃑  ⃑
𝑘

 Where the shrinkage coefficient w𝑘 =
Ω𝑦 ̅(𝑘,𝑘)

Ω𝑦 ̅(𝑘,𝑘)
+ Ω𝑢𝑦

(𝑘, 𝑘)  .And 

𝑌̅𝑢
⃑⃑  ⃑

𝑘

 is the Kth row of 𝑌̅𝑢. In flat Zone, Ω𝑦 ̅(𝑘, 𝑘) is much smaller than Ω𝑢𝑦
(𝑘, 𝑘) so that w𝑘 is close to 0. Hence most 

of the noise will be exactly 0 and all the noise 𝑌̅𝑘
⃑⃑  ⃑̀   by LMMSE operator 𝑌̅𝑘

⃑⃑  ⃑̀ = w𝑘 . 𝑌̅𝑢
⃑⃑  ⃑

𝑘

 In implementation, we first 

calculate Ω𝑦𝑢 ̅̅ ̅̅ ̅ from the variable noisy dataset 𝑌̅𝑢 and then estimate Ω𝑦 ̅(𝑘, 𝑘) by Ω𝑦 ̅(𝑘, 𝑘) = Ω𝑦𝑢 ̅̅ ̅̅ ̅(𝑘, 𝑘) − Ω𝑢𝑦
(𝑘, 𝑘).     

In flat zones, it is often that  Ω𝑦𝑢 ̅̅ ̅̅ ̅(𝑘, 𝑘) − Ω𝑢𝑦
(𝑘, 𝑘) ≤ 0, and then we set Ω𝑦 ̅(𝑘, 𝑘) = 0. In this case w𝑘 will be exactly 

0 and all the noise in 𝑌̅𝑢
⃑⃑  ⃑

𝑘

 is removed. Denoted by 𝑌̀̅ the matrix of all  𝑌̅𝑘
⃑⃑  ⃑̀  . By transforming 𝑌̀̅ back to the time domain, 

we obtain the de-noise result of 𝑋̅𝑢  as 𝑋̀̅ =𝑌.̅̀ P𝑥 ̅We used the fact that 𝑃𝑥̅
−1 = 𝑃𝑥̅

𝑇 .Adding the mean values 𝜇𝑘 back 

to 𝑋̂̅ gives the de-noise dataset 𝑋̂ . The estimation of the central block 𝑥̅𝑢, denote 𝑥̅𝑢 ̀ , can then be extracted from 𝑋̂ 

and finally the denoised result of the underlying central block 𝑥̅𝑢 ̀ . Applying the above procedure to each pixel leads 

to the full de-noised image of 𝐼𝑢 . 

Table 3.1: PSNR Images 

IMAGE Psnr1 Psnr2 Ssim1 Ssim2 Stage (3) Psnr Stage (3) ssim 

Image1(House) 32.224 33.082 0.809 0.867 33.1 0.87 

Image2(Lena) 30.77 32.46 0.7887 0.8777 32.47 0.89 

Image3(yellow) 31.661 33.576 0.7737 0.888 33.59 0.888 

 

Fig 3.9 (a)original image (b)Noisy image (c)Stage 1 LPG-PCA output (d)Stage 2 LPG-PCA output 

Most of the noise will be removed by using the denoising procedures described in Sections 3.1–3.3. However, 

there is still much visually unpleasant noise residual in the denoised image. Table 3.1 shows an example. fig 3.8a is 

the original image Cameraman; fig 3.8b is the noisy version of it (s=20, PSNR= 22.1 dB); fig3.9a is the denoised 
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image (PSNR=29.8 dB) by using the proposed LPG-PCA method[40] . Although the PSNR is much improved, we 

can still see much noise residual in the denoising output. 

There are mainly two reasons for the noise residual. First, because of the strong noise in the original dataset X t, 

the covariance matrix Xxt is much noise corrupted, which leads to estimation bias of the PCA transformation matrix 

and hence deteriorates the denoising performance; second, the strong noise in the original dataset will also lead to 

LPG errors, which consequently results in estimation bias of the covariance matrix Xx (or Xxt). Therefore, it is 

necessary to further process the denoising output for a better noise reduction. Since the noise has been much removed 

in the first round of LPG-PCA denoising, the LPG accuracy and the estimation of Xx (or Xxt) can be much improved 

with the denoised image[41]. Thus, we can implement the LPG-PCA denoising procedure for the second round to 

enhance the denoising results. 

As shown in fig 3.3a the noise should be updated in the second stage of LPG-PCA denoising Algorithm. Denote 

by 𝑖̂ the denoised version of noisy image 𝑙𝑣 in the first stage[2]. We write as 𝑖̂ =l+𝑣𝑠 where 𝑣𝑠 is the residual in the 

denoised image. We need to estimate the level of  𝑣𝑠 , denoted by 𝜎2 =√𝐸[𝑣𝑠
2]   and input it to the second stage LPG-

PCA denoising. Here we estimate  𝜎2  based on the difference between  𝑖̂ and 𝑙𝑣 let 

                                                 𝑖̂ = 𝑙𝑣 − 𝑖̂ = 𝑣 − 𝑣𝑠  

we have: 

              𝐸[𝐼−2]= 𝐸[𝑣2] + 𝐸[𝑣𝑠
2] − 2𝐸[𝑣 − 𝑣𝑠] = 𝜎2 + 𝜎𝑠

2 − 2𝐸[𝑣 − 𝑣𝑠] 

we approximately view 𝑣𝑠 as smoothed version of  noise 𝑣 , and it contains mainly the low frequency 

component 𝑣.nLet 𝑣̅ = 𝑣 − 𝑣𝑠 be their difference and 𝑣̅ contains mainly the high frequency component of v. there is 

𝐸[𝑣 − 𝑣𝑠] = 𝐸[𝑣̅ − 𝑣𝑠] + 𝐸[𝑣𝑠
2]. 

In general, 𝐸[𝑣̅ − 𝑣𝑠] is much smaller compeared with 𝐸[𝑣𝑠
2]. For example, after the first stage denoising of noisy 

image cameraman (𝜎 = 20). we have 𝐸[𝑣𝑠
2]=72 and  𝐸[𝑣̅ − 𝑣𝑠] = 17. For the convenience of development, we 

remove 𝐸[𝑣̅ − 𝑣𝑠] from 𝐸[𝑣 − 𝑣𝑠] and let  

                          𝐸[𝑣 − 𝑣𝑠] = 𝐸[𝑣̅ − 𝑣𝑠] + 𝐸[𝑣𝑠
2] ≈ 𝐸[𝑣𝑠

2]=𝜎𝑠
2 

Thus, from the above equation we have  

𝜎𝑠
2 ≈ 𝜎2 − 𝐸 

In practical 𝑣𝑠 𝑤𝑖𝑙𝑙 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑛𝑜𝑡 𝑜𝑛𝑙𝑦  the noise residual but also the estimation error of noiseless image l. 

therefore, in implementation we let 𝜎𝑠 = 𝑐𝑠. √𝜎2 − 𝐸[𝐼−2] 

Where 𝑐𝑠 < 1 is a constant, we experimentally found that setting 𝑐𝑠 around 0.35 lead to satisfying denoising 

results for most of the testing images, shows fig 3.8d shows the denoising results (PSNR = 30.1dB) of cameraman 

after the second stage. Although the PSNR is not improved too much on this image, we can clearly see that the visual 

quality is much improved by effectively removing the noise residual in the first stage. 

3.3  Color images denoising based on LPG-PCA 

There are two approaches to extending the proposed LPG-PCA algorithm to color images. The first approach is 

to apply separately LPG-PCA to each of the red, green and blue channels. This approach is simple to implement but 

it ignores the spectral correlation in the color image. The second approach is to form a K 3 color variable cube with 

each K K variable block corresponding to the red, green or blue channel. Like in the denoising of grey level image, 

the color variable cube is stretched to a color variable vector of dimension 3K2. Then the training samples of the color 

variable vector are selected in the local L 3 window using the LPG procedure. All the other steps are the same as those 

in the LPG-PCA denoising of grey level images. 

Compared with the first approach, the second approach can exploit both the spatial correlation and the spectral 

correlation in denoising color images. However, there are two main problems. First, the dimensionality of the color 

variable vector is three times that of the gray level image, and this will increase significantly the computational cost 

in the PCA denoising process. Second, the high dimensionality of the color variable vector requires much more 

training samples to be found in the LPG processing. Nonetheless, we may not be able to find enough training samples 
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in the local neighborhood so that the covariance matrix of the color variable vector may not be accurately estimated, 

and hence the denoising performance can be reduced. With the above consideration, in this paper we choose the first 

approach for LPG-PCA based color image denoising due to its simplicity and robustness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: Experimental Results and Discussions 

4.1 Introduction 

In the proposed LPG-PCA denoising algorithm, most of the computational cost spends on LPG grouping and PCA 

transformation, and thus the complexity mainly depends on two parameters: the size K of the variable block and the 

size L of training block. In LPG grouping, it requires (2K2 1) (L K+ 1)2 additions, K2 (L K+ 1)2 multiplications and 

(L K+1)2 ‘‘less than’’ logic operations. Suppose in average S training samples are selected, i.e. 

 

Fig 4. 1: The test images Lena, Cameraman, Barbara, Peppers, House, Blood cell, Paint, Monarch, Tower (color) 

and Parrot (Color) 
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4.2 Experimental Results 

Table 4.1: The PSNR (dB) and SSIM results of the denoised images in the two stages by the proposed LPG-PCA 

method. 

Images Lena Cameraman House Paint Monarch 

First Stage 

S=10 33.60(0.9218) 33.9(0.9261) 35.4(0.9003) 33.5(0.9280) 34.0(0.9522) 

s=20 29.5(0.8346) 29.8(0.8320) 31.8(0.8084) 29.3(0.8440) 29.6(0.8859) 

s=30 27.1(0.7441) 27.3(0.7395) 29.3(0.7225) 26.8(0.7467) 27.0(0.8071) 

s=40 25.4(0.6597) 25.5(0.6393) 27.3(0.6243) 25.0(0.6590) 25.2(0.7267) 

Second Stage 

s=10 33.7(0.9243) 34.1(0.9356) 35.6(0.9012) 33.6(0.9311) 34.2(0.9594) 

s=20 29.7(0.8605) 30.1(0.8902) 32.5(0.8471) 29.5(0.8683) 30.0(0.9202) 

s=30 27.6(0.8066) 27.8(0.8558) 30.4(0.8185) 27.2(0.8088) 27.4(0.8769) 

s=40 26.0(0.7578) 26.2(0.8211) 28.9(0.7902) 25.6(0.7569) 25.9(0.8378) 

 

Table 4.2: The PSNR (dB) and SSIM results of the denoised images in the two stages by the proposed LPG-PCA 

method. 

Images Lena Cameraman House Paint Monarch 

First Stage 

s=10 32.5(0.9357) 33.4(0.8909) 34.6(0.9137) 34.7(0.9047) 34.5(0.9198) 

s=20 28.3(0.8530) 29.9(0.8177) 31.3(0.8587) 30.6(0.7922) 30.6(0.8337) 

s=30 26.0(0.7663) 27.5(0.7332) 28.6(0.7864) 28.3(0.6772) 28.2(0.7434) 

s=40 24.2(0.6741) 25.9(0.6447) 26.7(0.7076) 26.6(0.5718) 26.3(0.6564) 

Second Stage 

s=10 32.5(0.9378) 33.3(0.8943) 34.8(0.9173) 34.8(0.9123) 34.6(0.9255) 

s=20 28.5(0.8716) 30.1(0.8413) 32.0(0.8836) 31.1(0.8522) 31.1(0.8776) 

s=30 26.2(0.8028) 27.9(0.7973) 29.6(0.8538) 29.1(0.8069) 29.0(0.8415) 

s=40 24.5(0.7378) 26.7(0.7648) 28.0(0.8239) 27.8(0.7695) 27.5(0.8097) 

The value in the parenthesis is the SSIM measure the dataset Xt is of dimension K2 S. Then in the PCA 

transformation, it requires K2 S+ (S2 1) K4 + (K2 1) K2 S additions, K4 (S+S2) multiplications, and an SVD 

decomposition of a K2 K2 definite covariance matrix. In this paper, we set K= 5 and L= 41 in all the experiments to 

test the denoising performance. The threshold T in the LPG grouping is set to 25. In the implementation of LPG-PCA 

denoising, actually the complete K K block centered on the given pixel will be denoised. Therefore, the finally restored 

value at a pixel can be set as the average of all the estimates obtained by all windows containing the pixel. This strategy 

was also used in[42]. By our experiments, this can increase about 0.3 dB the noise reduction for most of the test 

images. 

The proposed LPG-PCA algorithm can be viewed as a completion and extension of the PCA-based denoising 

algorithm in[42]. We compare LPG-PCA with four representative and state-of-the-art denoising algorithms: the 

wavelet-based denoising methods[40, 43],the sparse representation based K-SVD denoising method [44]and the 

recently developed BM3D denoising method[24, 45] .The BM3D method is one of the best denoising methods and it 

has been viewed as a benchmark for denoising algorithm evaluation. The ten test images (size: 256 256) used in the 

experiments, including eight grey level images and two-color images, are shown in fig 4.1. We added Gaussian white 

noise of different levels (s= 10, 20, 30 and 40, respectively,) to the original image and use the five denoising algorithms 

for noise removal. Due to the limitation of space, in this paper we can only show partial denoising results.  

We evaluate and compare the different methods by using two measures: PSNR and SSIM. Although PSNR can 

measure the intensity difference between two images, it is well-known that it may fail to describe the visual perception 

quality of the image. On the other hand, how to evaluate the visual quality of an image is a very difficult problem and 

it is currently an active research topic. The SSIM index proposed in, is one of the most commonly used measures for 

image visual quality assessment. Compared with PSNR, SSIM can better reflect the structure similarity between the 

target image and the reference image. We first verify the improvement of the noise removal in the second stage of the 

PLG-PCA method. Table 4.1 lists the PSNR and SSIM measures of the first stage and second stage denoising outputs 
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on the test image set. We can see that the second stage can improve 0.1–1.5 dB the PSNR values for different images 

under different noise level (s is from 10 to 40). Although for some images the second stage will not improve much the 

PSNR measures, the SSIM measures, which can better reflect the image visual quality, can be much improved. For 

instance, for image Lena with noise level s=30, the SSIM measure is much increased from 0.7441 to 0.8066 after the 

second stage denoising, while the PSNR is increased by only 0.5 dB. 

We then compare the different methods on denoising. Table 4.2 list the PSNR and SSIM results by different 

methods on the 10 test images. Let’s first see the PSNR measures by different methods. From Table 4.2we see that 

the algorithm BM3D has the highest PSNR measures. This is because it sufficiently exploits the non-local 

redundancies in the image. The K-SVD algorithm uses a pre-trained over-complete dictionary in the denoising process 

and it achieves almost the same PSNR results as those by the proposed LPG-PCA algorithm. The PSNR result of 

LPG-PCA is higher than the wavelet-based methods [40, 43] , and the wavelet-based method [40] has the lowest 

PSNR value. 
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Fig 4. 2: The denoising results of different methods 

Table 4.3: The PSNR (dB) and SSIM results of the denoised images at different noise levels and by different 

schemes 

Methods [40] [43] [44] [45] Proposed 

Lena      

s= 10 33.1(0.9154) 33.2(0.9160) 33.5(0.9203) 33.9(0.9272) 33.7(0.9243) 

s= 20 29.2(0.8455) 29.4(0.8514) 29.7(0.8571) 30.2(0.8699) 29.7(0.8605) 

s= 30 27.2(0.7878) 27.5(0.7964) 27.8(0.8055) 28.3(0.8231) 27.6(0.8066) 

s= 40 25.7(0.7315) 26.0(0.7466) 26.2(0.7504) 27.3(0.7727) 26.0(0.7578) 

Cameraman      

s= 10 33.2(0.9170) 33.7(0.9307) 33.9(0.9334) 34.4(0.9399) 34.1(0.9356) 
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s= 20 29.1(0.8449) 29.6(0.8744) 29.9(0.8810) 30.6(0.8962) 30.1(0.8902) 

s= 30 26.8(0.7945) 27.5(0.8307) 27.9(0.8426) 28.5(0.8655) 27.8(0.8558) 

s= 40 25.3(0.7310) 26.0(0.7806) 26.5(0.8048) 27.1(0.8303) 26.2(0.8211) 

House      

s= 10 34.4(0.8791) 34.8(0.8809) 35.5(0.8960) 36.2(0.9143) 35.6(0.9012) 

s= 20 31.3(0.8199) 32.1(0.8374) 32.7(0.8458) 33.3(0.8553) 32.5(0.8471) 

s= 30 29.4(0.7829) 30.2(0.8066) 30.7(0.8137) 31.6(0.8319) 30.4(0.8185) 

s= 40 28.1(0.7409) 28.9(0.7708) 29.1(0.7771) 30.7(0.8065) 28.9(0.7891) 

Paint      

s= 10 33.0(0.9227) 33.5(0.9319) 33.5(0.9293) 33.7(0.9329) 33.6(0.9311) 

s= 20 29.0(0.8513) 29.6(0.8687) 29.6(0.8655) 29.9(0.8731) 29.5(0.8683) 

s= 30 26.9(0.7897) 27.5(0.8110) 27.5(0.8091) 27.7(0.8196) 27.2(0.8088) 

s= 40 25.6(0.7408) 26.0(0.7616) 26.0(0.7599) 26.6(0.7711) 25.6(0.7569) 

Monarch      

s= 10 33.1(0.9442) 33.6(0.9527) 33.5(0.9501) 33.9(0.9577) 34.2(0.9594) 

s= 20 28.8(0.8912) 29.5(0.9076) 29.6(0.9077) 30.1(0.9222) 30.0(0.9202) 

s= 30 26.5(0.8370) 27.1(0.8583) 27.4(0.8663) 28.0(0.8850) 27.4(0.8769) 

s= 40 25.0(0.7916) 25.7(0.8179) 25.9(0.8260) 26.6(0.8462) 25.9(0.8378) 

Barbara      

s= 10 31.6(0.9241) 31.6(0.9246) 32.3(0.9349) 32.7(0.9420) 32.5(0.9378) 

s= 20 27.4(0.8314) 27.2(0.8316) 28.4(0.8646) 28.9(0.8819) 28.5(0.8716) 

s= 30 25.1(0.7472) 25.0(0.7475) 26.3(0.7919) 26.8(0.8165) 26.2(0.8028) 

s= 40 23.5(0.6696) 23.5(0.6718) 24.7(0.7262) 25.0(0.7444) 24.5(0.7378) 

Peppers      

s= 10 33.1(0.8853) 33.3(0.8901) 33.4(0.8920) 33.6(0.8939) 33.3(0.8909) 

s= 20 29.8(0.8272) 30.1(0.8381) 30.3(0.8400) 30.6(0.8496) 30.1(0.8413) 

s= 30 27.8(0.7781) 28.3(0.7968) 28.4(0.7983) 28.8(0.8108) 27.9(0.7973) 

s= 40 26.4(0.7339) 26.9(0.7552) 27.1(0.7657) 27.2(0.7729) 26.7(0.7648) 

Blood cell      

s= 10 34.6(0.9125) 34.5(0.9136) 35.0(0.9183) 35.0(0.9190) 34.8(0.9137) 

s= 20 31.5(0.8706) 31.5(0.8790) 32.3(0.8859) 32.3(0.8874) 32.0(0.8836) 

s= 30 29.2(0.8338) 29.4(0.8473) 29.9(0.8525) 30.2(0.8622) 29.6(0.8538) 

s= 30 29.2(0.8338) 29.4(0.8473) 29.9(0.8525) 30.2(0.8622) 29.6(0.8538) 

s= 40 27.4(0.7899) 27.8(0.8129) 28.4(0.8227) 28.0(0.8264) 28.0(0.8239) 

Tower (color)      

s= 10 34.2(0.9017) 34.6(0.9099) 34.7(0.9115) 35.0(0.9144) 34.8(0.9123) 

s= 20 30.5(0.8270) 31.1(0.8444) 31.4(0.8533) 31.6(0.8576) 31.1(0.8522) 

s= 30 28.5(0.7711) 29.2(0.7919) 29.3(0.8018) 29.7(0.8135) 29.1(0.8069) 

s= 40 27.3(0.7277) 27.9(0.7505) 27.9(0.7583) 28.3(0.7760) 27.8(0.7695) 

Parrot (color)      

s= 10 34.0(0.9158) 34.1(0.9190) 34.3(0.9215) 34.6(0.9274) 34.6(0.9255) 

s= 20 30.3(0.8523) 30.6(0.8665) 30.8(0.8684) 31.2(0.8832) 31.1(0.8776) 

s= 30 28.2(0.8048) 28.6(0.8269) 28.8(0.8308) 29.3(0.8505) 29.0(0.8415) 

s= 40 26.7(0.7642) 27.2(0.7925) 27.4(0.7994) 27.5(0.8179) 27.5(0.8097) 

Let’s then focus on the SSIM measure and the visual quality evaluation of these denoising algorithms. From Table 

2 we see that BM3D again achieves the highest SSIM measures. Although the proposed LPG-PCA has almost the 

same PSNR results as K-SVD, it has higher SSIM measures than K-SVD. Again, the two wavelet-based denoising 

methods have the lowest SSIM measures. 

Fig. 4.2 show the cropped and zoom-in denoising results of the ten noisy images (with noise level s= 20) by 

different methods. The sub-figure (a) is the original image; sub-figures (b–f) are the denoised images by the methods 

in [43] [8,10,14,20] and the proposed LPG-PCA methods, respectively. We see that although BM3D has higher SSIM 

measures than LPG-PCA, their denoised images are very similar in real visual perception, and they have much better 

visual quality than all the other methods. The K-SVD method generates many visual disturbing artifacts in the 
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denoised image. The two wavelet-based denoising methods [8,10] have the worst visual quality. This is because in 

WT, the same wavelet basis function (with dilation and translation) is used to de-correlate the many different image 

structures. Often this is not efficient enough to represent the image content so that many denoising errors appear. The 

proposed LPG-PCA denoising algorithm uses PCA to adaptively compute the local image decomposition transform 

so that it can better represent the image local structure. In addition, the LPG operation is employed to ensure that only 

the right samples are involved in PCA training. The denoised images by BM3D and LPG-PCA are very similar in 

terms of visual perception. Both of them can well preserve the image edges and remove the noise without introducing 

too many artifacts. Although the PSNR and SSIM measures of LPG-PCA are lower than that of BM3D, LPG-PCA 

has competitive results in edge preservation. BM3D works better in preserving large-grain edges and denoising 

smoothing areas (e.g. the image House), where there is a rich amount of non-local redundancies that could be 

exploited, while LPG-PCA works better in preserving image fine structures (e.g. the eye area of image Lena and the 

camera boundary in image Cameraman), where BM3D may generate some artifacts because there are not so many 

non-local redundancies around those structures. 

In summary, as a non-local collaborative denoising technique, BM3D can effectively exploit the non-local 

redundancy in the image to suppress noise. Therefore, it could have very high PSNR and SSIM measures. The large-

grain structures and smooth areas could be well reconstructed. However, for fine-grain structures, incorrect non-local 

information may be introduced by BM3D for image restoration so that some visible artifacts can be generated in those 

areas. The proposed LPG-PCA method can be viewed as a semi-non-local scheme. It uses a local window to adaptively 

train the local transform. The vector variable for denoising is defined on a small local block so that LPG-PCA works 

well in fine-grain edge preservation. 

 

Chapter 5: Conclusion 

This paper proposed a spatially adaptive image denoising scheme by using principal component analysis (PCA). 

To preserve the local image structures when denoising, we modeled a pixel and its nearest neighbors as a vector 

variable, and the denoising of the pixel was converted into the estimation of the variable from its noisy observations. 

The PCA technique was used for such estimation and the PCA transformation matrix was adaptively trained from the 

local window of the image. However, in a local window there can have very different structures from the underlying 

one; therefore, a training sample selection procedure is necessary. The block matching based local pixel grouping 

(LPG) was used for such a purpose and it guarantees that only the similar sample blocks to the given one are used in 

the PCA transform matrix estimation. The PCA transformation coefficients were then shrunk to remove noise. The 

above LPG-PCA denoising procedure was iterated one more time to improve the denoising performance. Our 

experimental results demonstrated that LPG-PCA can effectively preserve the image fine structures while smoothing 

noise. It presents a competitive denoising solution compared with state-of-the-art denoising algorithms, such as 

BM3D. 

In this paper, I have introduced two new filters for removing impulse noise from images and shown how they 

compare to four other well-known techniques for noise removal. First, four common noise filtering algorithms were 

discussed. Next, a Spatial Median Filter was proposed based on a combination of work on the Vector Median Filter 

and the Spatial Median quantile order statistic. Seeing that the order statistic could be utilized in order to make a 

judgment as to whether a point in the signal is considered noise or not, a Modified Spatial Median Statistic is proposed. 

The Modified Spatial Median Filter requires two parameters: A window size and a threshold T of the estimated non-

noisy pixels under a mask. 

In the results, we find the best threshold T to use in the Modified Spatial Median Filter and determined that the best 

threshold is 4 when using a 3×3 window mask size. Using these as parameters, this filter was included in a comparison 

of the Mean, Median, Component Median, Vector Median, and Spatial Median Noise Filters. In the broad comparison 

of noise removal filters, it was concluded that for images containing p ≤ 0.15 noise composition, the Modified Spatial 

Median Filter performed the best and that the Component Median Filter performed the best overall noise models 

tested. 
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