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ABSTRACT 

This paper deals with discussion on the interval analysis, finite interval arithmetic, interval order relations and its 

application to find the global optimal solution of unconstrained optimization problems. The existing works on the 

interval order relations have been pointed out and the modified definitions have been presented. An interval 

technique is proposed to solve unconstrained unimodal/multimodal optimization problems with continuous 

variables. In this proposed method, the search region is divided into two equal sub-regions successively and in each 

sub-region, the lower and upper bounds of the objective function are computed with the help of interval arithmetic. 

Afterward, interval order relations are used to compare these two interval valued objectives and considering the 
sub-region containing the better objective value, the global optimal value or close to it of the objective function is 

obtained. As a final point, the proposed technique is applied to solve a number of test problems of global 

optimization with lower as well as higher dimensions available in the literature and is compared with the existing 

methods with respect to the number of function evaluations. 

 

Keyword: - Global Optimization, Interval Number, Sub-region, Interval Order Relations, Optimistic and 

Pessimistic Point of View, Unconstrained Optimization 

 

1. INTRODUCTION 

In the existing literature of global optimization, the most of the researcher have done their works and have proposed 
different techniques which either use the derivative information or not. Some researchers have used several soft 

computing techniques with the combination of several evolutionary search techniques, like, genetic algorithm (GA), 

particle swarm optimization (PSO), ant colony algorithm (ACO), differential evolution (DE), etc. Several 

researchers have also been used simulation based search techniques to find the global optimal solution of 

constrained as well as unconstrained optimization problems. Sometimes they have optimized the problems in precise 

environment and sometimes in imprecise environment.  

 

While considering the optimization problems as decision making problems, specially, in case of heuristic search 

methods, the selection of the better or the best value of the objective function is of formidable task. It is also very 

difficult, in the case when objective function is interval valued, as is considered in this work. Here, a set of intervals 

appear in the selection of the best choice. This raises a question regarding the comparison of two arbitrary interval 

numbers. To find the better interval, Moore [12] defined two transitive order relations of interval numbers. 
However, these order relations cannot find the ranking between two partially or fully overlapping interval numbers. 

After Moore [12], Ishibuchi and Tanaka [9] recommended two order relations “≤LR” and “≤CW.” After them, Levin 

[10] defined a remoteness function to compare two arbitrary interval numbers. However, this process for comparison 

is very much complicated to find out the best choice. Then, Sevastjanov and Róg [16] anticipated in the probabilistic 

approach.  

Decision-making is a significant job for the choosing the best choice in conflicting situations. It depends upon the 

uncertainty of the problem coming out from different behavior of the parameters involved and also from the decision 
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variables. There are two types of decision making, namely, the optimistic and the pessimistic decision-making. For 

optimistic decision-making, the decision-maker chooses the best option ignoring the uncertainty whereas, in the 

pessimistic case, the decision-maker selects the best option with less uncertainty.  

 

In this context, the solution procedure is extremely significant factor for finding global optima of a multimodal, 

multidimensional, non-convex, non-linear, continuous optimization problem with fixed coefficients. There are 

several deterministic and stochastic methods proposed for finding the global optima or a value near to it. These 

methods are available in Floudas et al. [6] and Hansen and Walster [7]. Ichida [8] developed an interval computing 

method to find out the global optima of the problems with fixed coefficients. In this interval computing method, the 

search domain is divided into two sub-regions and the lower and upper bounds of the objective function are 

estimated in each sub-region. By rejection principle, we can reject one of the sub-regions. Continuing this process, 

we can find the global optima. There are several rejection principles for rejection of one sub-region from two. In this 

connection, one may refer to the works of Csendes [5], Markót et al. [11], Csallner et al. [4], and Casado et al. [2]. In 

this paper, we have studied the existing works on comparing and ranking of any two interval numbers. After 

pointing out the weakness of these definitions, a new approach is suggested in the context of decision maker‟s 

(optimistic and pessimistic) point of view. After that, the definition of interval order relations irrespective of 

decision makers‟ point of view is considered [23].  
 

Secondly, an interval computing technique is proposed to solve nonlinear bound constrained (also known as the box 

constrained) optimization problems. In the interval computing technique, the original domain of variables is divided 

into two equal sub-regions successively and the lower and upper bounds of the objective function are computed in 

each sub-region with the help of interval arithmetic. Now, by comparing these two interval objective values by the 

proposed order relations in [23], and then considering the sub-region containing the better objective value, one can 

always find out the global optimal value of the objective function or close to it in the form of an interval with 

negligible width. In conclusion, this method is tested on several test functions available in the literature and is 

compared with the existing methods with respect to the number of function evaluations. 

 

2. NOTATIONS USED 
 

The notations which have been used in this paper are given in the table below 

 

Table -1: Notations Used 

 

Notation Description 

 ,L RA a a  Interval number A  

La  Left bound of interval number A 

Ra  Right bound of interval number A 

Ca  Centre of interval number A 

Wa  Radius/half width of interval number A 

 Z f x  Objective function 

 1 2, ,..., nx x x x  Decision vector 

l
 

Lower bound of decision vector 

u
 

Upper bound of decision vector 

,  j jl u  Lower and upper bounds of variable jx  

D
 

Search domain 
nR  n dimensional space 

  [ , ]k k kF R f f  Interval valued objective function in the sub-region kR  

,k kf f  Lower and upper bounds of f(x) in the selected search 

 sub-region kR  in the k-th iteration 

3. ASSUMPTIONS 

The assumptions which have been taken up are,  
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i) Interval numbers assumed to finite and closed intervals  

ii) The test functions are defined and continuous in the given domain  

iii) All the test functions have their extremas in the search domain. 

iv) The search domain is bounded. 

v) The test functions may be convex/non-convex, continuous, unimodal/multimodal. 

vi) The test functions may have one or more variables. 
 

 

4. FINITE INTERVAL ARITHMETIC 

 

An interval number [ , ]L RA a a  is defined to be the closed interval [ , ]L RA a a  { : , }L Rx a x a x   , 

where La , Ra  are the lower and upper bounds respectively and   is the set of all real numbers. The interval number 

[ , ]L RA a a  can also be represented in the centre and the radius form as ,c wA a a , where  / 2c L Ra a a   and  

  / 2w R La a a   be the centre and radius of the interval A. It is to be noted that every real number x  can also 

be treated as a degenerate interval [ , ]x x  of zero width. The works of Hansen and Walster [7] and Mahato and 

Bhunia [22] and Karmakar et al. [21] may be referred for details regarding interval arithmetic, integral power of 

interval number and also the n-th root as well as the rational power of interval number. 

 

Definitions: Let [ , ]L RA a a and [ , ]L RB b b be two intervals. Then the definitions of addition, subtraction, scalar 

multiplication, multiplication and division of interval numbers are as follows: 

 

Addition of two interval numbers A and B: [ , ] [ , ] [ , ].L R L R L L R RA B a a b b a b a b       

 

Subtraction of an interval number B from another one A: 

[ , ] [ , ] [ , ] [ , ] [ , ].L R L R L R R L L R R LA B a a b b a a b b a b a b           

 

Multiplication of an interval number A by any real number k:  For any real number k, 

[ , ] if 0
[ , ]

[ , ] if 0.

L R

L R

R L

ka ka k
kA k a a

ka ka k


  


 

 

Multiplication of two interval numbers A and B: 

[ , ] [ , ] [min( , , , ),max( , , , )].L R L R L L L R R L R R L L L R R L R RA B a a b b a b a b a b a b a b a b a b a b     

 

Division of an interval number A by another one B: 
1 1 1

[ , ] [ , ],  provided  0 [ , ]L R L R

R L

A
A a a b b

B B b b
     . 

Positive integral power of an interval number A: Let [ , ]L RA a a be an interval then for any non-negative integer 

n,  

[1,  1]                    if 0

[ ,  ]               if 0 or if  is odd

[ ,  ]               if 0 and  is even

[0,  max( ,  )] if 0  and ( 0) is even.

n n
L R Ln

n n
R L R

n n
L R L R

n

a a a n
A

a a a n

a a a a n





 


     

 

The n-th root of an interval number A: The n-th root of an interval [ , ]L RA a a , n being a positive integer is 

defined as,  
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1
[ ,  ]           if 0 or if  is odd

[0,  ]               if 0  and ( 0) is even

                          if 0 and  is even.

where  is the empty interval.

n n
L R L

n n
R L R

R

a a a n

A a a a n

a n



 


   
 

 

 

The modulus of an interval number A: The modulus of an interval [ , ]L RA a a  is defined as,  

 

 ,           if 0 

[ , ]        if 0
,

[0, ]            if 0,  >0,

[0, ]            if 0,  >0, .

L R L

R L R

L R

L L R L R

R L R L R

a a a

a a a
A a a

a a a a a

a a a a a

 



  

 
  

 

 

4.1 FUNCTIONS OF INTERVALS 

Some functions of interval which have been included in the test functions considered are presented here. These 

important functions are exponential function, logarithmic function and bounded trigonometric functions. 

 

EXPONENTIAL FUNCTION 

As the exponential function   axf x e is monotonic over any interval, the exponential extension of the interval 

[ , ]L RA a a  is defined as 

 exp( ) exp([ , ]) exp( ),exp( ) ,L R L RA a a a a 
  exp( ) exp( [ , ]) exp([ , ]) exp( ),exp( )L R R L R LA a a a a a a          

LOGARITHMIC FUNCTION 

As the exponential function  log ,  for 0x x  is monotonic over any interval, the logarithmic extension of the 

interval [ , ]L RA a a  is defined as 

 log( ) log([ , ]) log( ),log( ) ,  provided 0.L R L R LA a a a a a    

SINE AND COSINE FUNCTIONS 

The trigonometric functions sin(A) and cos(A) can be evaluated over any given interval A by evaluating the values 

of the functions at the end points and checking whether the interval contains a point or points where sin(A) and 
cos(A) can have extreme values.

 

 sin([ , ]) ,L R L Ra a b b
 
 

where 

 

 

 

 

1                              if  :  2 - ,
      2

min sin( ),sin( )    otherwise

1                              if  :  2 ,
and 2

min sin( ),sin( )    otherwise.

L R

L

L R

L R

L

L R

k k a a
b

a a

k k a a
b

a a








   

 




   

 







 

The function cos([ , ])L Ra a can be defined similarly. 
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4.2 ORDER RELATIONS OF INTERVAL NUMBERS 

 

In this section, the development of order relations of interval numbers has been discussed. Any two arbitrary interval 

numbers [ , ]L RA a a  and [ , ]L RB b b  may be categorized into the following three types (Fig.-1): 

 

Type I:   Non-overlapping i.e., the intervals are completely disjoint.  

Type II:  Partially overlapping intervals.  

Type III: Fully overlapping intervals i.e., one of the intervals contains the other.  

 

In this context, Moore [12] first pointed out two transitive order relations of the interval numbers. For any two 

intervals [ , ]L RA a a and [ , ]L RB b b , he gave the first transitive order relation „<‟ as  

          
 iff R LA B a b 

   
and the other transitive order relation for intervals is the set inclusion property. This is depicted as A⊆B iff 

 and .L L R Rb a a b    

 

 
 

Figure-1: Different types of interval numbers 
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Then, Ishibuchi and Tanaka [9] defined the order relations of two closed intervals [ , ] ,L R c wA a a a a   

and [ , ] ,L R c wB b b b b  , in the following ways:  

(i) 
L iff a  and 

 iff  and 

LR L R R

LR LR

A B b a b

A B A B A B

  

  
  

(ii) 
c iff a  and 

 iff  and .

cw c w w

cw cw

A B b a b

A B A B A B

  

  
  

 

These order relations are reflexive, transitive and anti-symmetric i.e., partially order relations. Clearly, for a 

minimization problem, the decision maker will prefer the interval A. Generalizing the definitions of Ishibuchi and 

Tanaka [9], in1996, Chanas and Kuchta [3] proposed the concept of t0t1 – cut of an interval and defined new order 

relations.  

 
Kundu [24] first noticed that the interval ranking methods discussed above could not find the measure „How much 

larger the interval is, if the interval is greater than the other?‟ Introducing the „fuzzy leftness relation‟ he attempted 

to answer this question. For the intervals A and B, let x ∈ A and y ∈ B be uniformly and independently distributed in 

A and B respectively. Then A is left to B if Left (A,B) = max{0,P(x < y) − P(x > y)} > 0 and A is right to B if Right 

(A,B) = max{0,P(x > y) −P(x < y)} > 0 where P(x < y) denotes the probability that x < y. This is a probabilistic 

approach.  

 

In the year, 2000, another two approaches of ranking of two closed intervals were given in [15]. In the first 

approach, they defined the acceptability function (or acceptability index or value judgment index) : I ×I [0, )     

for the intervals A and B as  

 , ,  where 0.c c
w w

w w

b a
A B b a

b a


   

  

 This may be regarded as a grade of acceptability of the „first interval to be inferior to the second‟. If  , 0A B  , 

then for the minimization problem, the interval A cannot be accepted. If  0 , 1A B  , A can be accepted with 

the grade of acceptability    / .c c w wb a b a   Again, for  , 1A B  , A is accepted with full satisfaction. 

According to them, the acceptability index is only a value based ranking index and it can be applied partially to 

select the best alternative from the pessimistic point of view of the decision maker. So, only the optimistic decision 
maker can use it completely. In another approach, Sengupta and Pal [15] introduced the fuzzy preference ordering 

for the ranking of a pair of interval numbers on the real line with respect to a pessimistic decision maker‟s point of 

view. 

 

Mahato and Bhunia [22] presented the modified definitions of ranking with respect to optimistic and pessimistic 

decision makers‟ point of view for maximization and minimization problems separately. In 2012, Sahoo et al. [23] 

proposed the simplified definition of interval order relations ignoring optimistic and pessimistic decisions. It is to be 

mentioned that both the definitions by Mahato and Bhunia [22] and Sahoo et al. [23] report the same result. The 

latest most generalized interval order relations irrespective of optimistic and pessimistic decision makers‟ point of 

view are given below for maximization and the minimization problems separately. 

  

Interval ranking for maximization problem: Let  [ , ] ,L R c wA a a a a   and [ , ] ,L R c wB b b b b   be two 

intervals. Then if  

max

forType 1andType 2 intervals

either  or forType 3 intervals, 

c c

c c w w c c R R

a b
A B

a b a b a b a b


 

     
 

the interval A  is accepted for maximization problems. The order relation “ max ” is reflexive, transitive but not 

symmetric. 

 

Interval ranking for minimization problem: Let  [ , ] ,L R c wA a a a a   and [ , ] ,L R c wB b b b b   be two 

intervals. Then if  
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min

forType 1andType 2 intervals

either  or forType 3 intervals, 

c c

c c w w c c L L

a b
A B

a b a b a b a b


 

     
 

the interval A  is accepted for minimization problems. The order relation “ min ” is reflexive, transitive but not 

symmetric. 

 

 

5. SOLUTION PROCEDURE 
 

Let us consider an unconstrained optimization (maximization or minimization) problem with fixed coefficients as 

follows: 

  ( ),   ,Z f x l x u    

where,      1 2 1 2 1 2, ,..., , , ,..., , , ,...,n n nx x x x l l l l u u u u    and n represents the number of variables, xj is the j-th 

decision variable whose prescribed upper and lower bounds are lj and uj, respectively. Hence, the search region of 

the above problem is as follows: 

D ={x ∈ Rn : lj ≤ xj ≤ uj, j= 1,2,...,n}.  

 

 

 

5.1 INTERVAL METHODOLOGY 

 

The prescribed domain is defined as 

D ={x∈ Rn : lj ≤ xj ≤ uj, j= 1,2,...,n}.  
 

Then, D can be divided into two sub-regions R1 and R2 with respect to the variable xk(k = 1,2,...,n) defined as 

follows: 

1  :  , ; 1,2,..., 1, 1,..., ,
2

n k k
k k j j j

l u
R x R l x l x u j k k n

 
         

 
 

2  :  , ; 1,2,..., 1, 1,..., .
2

n k k
k k j j j

l u
R x R x u l x u j k k n

 
         

   

Let 1 1 1( ) ,F R f f     and 2 2 2( ) ,F R f f    be the interval values of f(x) in the sub-regions R1 and R2, respectively, 

where  ,  1,2k kf f k  denote the lower and upper bounds of f(x) in Rk, calculated by applying interval arithmetic. 

Then comparing F(R1) and F(R2), the sub-region either R1 or R2 that contains the better objective value, is accepted. 

This process for each sub-region is repeated till the domain of each variable reduces to an interval with negligible 

width. Finally, the global optimal value or close to the optimal value of the given objective function has been 

obtained. For the entire process, Algorithm 6.1 is developed for minimization/maximization problems. 

 

Algorithm 5.1 
Step-1: Initialize the number of variables n. 
Step -2: Initialize the lower and upper bounds lj and uj (j = 1,2,...,n)of the variables. 
Step-3: Compute the widths εj = uj − lj; j = 1,2,...,n . 
Step- 4: If εj <a ,a pre-assigned very small positive number, then go to Step(7); otherwise go to the next step. 
Step-5: (i) Divide the accepted sub-region or region X into two other smaller distinct sub-regions R1 and R2 such that   
               R1∪R2=X.  

             (ii) Applying interval arithmetic, compute the interval value 1 1 1( ) ,F R f f   
 and 2 2 2( ) ,F R f f   

of the objective   

                  function in the sub-regions R1 and R2, respectively.  

            (iii) Select the sub-region R1 or R2 as the new search region which contains the better objective function value by    
                  comparing F(R1)and F(R2)with the help of order relations between two intervals defined for minimization and   
                 maximization problems, respectively. 

Step -6: Go to Step 3. 
Step- 7: Print the values of the variables and the objective function in the form of intervals. 
Step- 8: Stop. 
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6 NUMERICAL EXAMPLES 
 

Numerical experiments have been carried out to test the performance of the proposed approach described in this 

paper. A number of well-known test functions have been selected from the literature [2,13,14]. These test functions 

have different features like convex/non-convex, continuous, unimodal/multimodal and low/high dimension. Solving 

these test problems, the global optimal solution or near to optimal have been found by applying Algorithm 6.1. The 

test problems with their results have been given in the appendix with corresponding number of function evaluation 

with error tolerance ε = 10−8. Tables 2-7 also show the comparison in number of function evaluations among the 

available methods, like, TIAM (Traditional Interval analysis global minimization Algorithm with Monotonicity 

test), IAG (Interval analysis global minimization Algorithm using Gradient information), GA-SQ (Genetic 

Algorithm by Salhi and Queen [14]), and the proposed method in this paper. The approach for computing the best-

found value in each sub-region of a given search region of the test problem has been coded in C programming 

language and implemented on a Core 2 Duo PC, 4.0 GHz with 2 GB RAM in LINUX environment. 

 

 
 

Table-2: Computational results & comparison of the proposed method with others methods for single variable test functions  

 
Sl. 

N

o. 

Test Problem Optimal 

Solution 

Min. Objective Value No. of Function Evaluations 

TIAM IAG GA-SQ Proposed 

Method 

1    2 2
2 0.03exp (200( 0.0675)) ,

         10 10

f x x x

x

   

  
 

[0.067388, 

0.067388] 

[-0.020903,-0.020903] 112 88 - 62 

2 
  ,

               2.7 7.5

10
sin( ) sin( ) ln( ) 0.84

3
f x

x

x
x x x

 

    
[5.199778, 

5.199778] 

[-4.601308,-4.601308] 132 81 - 58 

3 
  2 2

   

                -10 10

1 1
sin (1 ) ( ) ,

4 4
f x

x

x x


 

 
   

[-0.787880, 

-0.787880] 

[0.475689,0.475689] 167 114 - 62 

4 
   

2 2
   

                -10 10

1 (sin (1 )) 1,f x

x

x x

 

    
[1.000000, 

1.000000] 

[1.000000, 1.000000] 78 62 - 62 

5 
 

 
2

   

                -10 10

1
,

2 3
f x

x

x
 

 

   

[2.000000, 

2.000000] 

[-0.333333, -0.333333] 66 56 - 62 

6 
   

2
2 2

   

                -10 10

( 1) ,f x

x

x x x

 

   
[1.000000, 

1.000000] 

[0.000000, 0.000000] 107 88 - 62 

7   2
exp(    

                -10 10
),f x x
x


 

 
[0.000000, 

0.000000] 

[1.000000, 1.000000] 199 116 - 62 

8 
    

5

1

   

                -10 10

sin 1 ,
k

f x

x

k k x k




 

    

[-6.774576, 

-6.774576]; 

[-0.491391, 

-0.491391]; 

[5.791794, 

5.791794] 

[-12.031249, -12.031249] 459 333 - 62 

9 
 

2

   

                -20 20

-cos(x)+2,
20

f x

x

x


 

 

[0.000000, 

0.000000] 

[1.000000, 1.000000] 207 114 - 64 

10 
 

  

10

2
1

   0 10
1

,
i i i i

f x x

k x a c

  
 

  

a=(3.040,1.098,0.674,3.537,6.173,8.679,4.503,3.328,6.

937,0.700) 

k=(2.983,2.378,2.439,1.168,2.406,1.236,2.868,1.378,2.

348,2.268) 

c=(0.192,0.140,0.127,0.132,0.125,0.189,0.187,0.171,0.

188,0.176) 

 

[0.685844, 

0.685844] 

[-14.572917, -14.572917] 139 113 - 60 
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Table-3: Computational results & comparison of the proposed method with others methods for two variables test functions  

 

Sl. 

N

o. 

Test Problem Optimal 

Solution 

Min. Objective Value No. of Function Evaluations 

TIAM IAG GA-SQ Proposed 

Method 

1    2 22
1 2 2 1 1

1 2

2 100(

      2 2

, ) + 1- ,

          ,

R x x x x

x x

x

  


 

x1=[1.000000, 

1.000000] 

x2=[1.000000, 

1.000000] 

[0.000000, 0.000000] - - 200 116 

2 
     2 2

1 2-[ x x ]
1 2 1 2

1 2      100 100

, cos( )cos( )e ,

          ,

x x

x x

ES x x
   



  



 

x1=[3.141593, 

3.141593] 

x2=[3.141593, 

3.141593] 

[-1.000000, -1.000000] - - - 140 

3   2 2
1 2 1 2 1 2

1 2      100 100

, +2 -0.3cos(3 x )cos(4 x )+0.3,

          ,

x x x x

x x

BH  

  

 

x1=[0.000000, 

0.000000] 

x2=[0.000000, 

0.000000] 

[0.000000, 0.000000] - - - 140 

 

 

Table-4: Computational results & comparison of the proposed method with others methods for three variables test functions  

 

Sl. 

N

o. 

Test Problem Optimal 

Solution 

Min. Objective Value No. of Function Evaluations 

TIAM IAG GA-SQ Proposed 

Method 

1   2 2 2

1 2 3 1 2 3

1 2 3

1

      100 100

, , + ,

          , ,

F x x x x x x

x x x



  


 

xi=[0.000000, 

0.000000] 

i=1,2,3 

[0.000000, 0.000000] - - - 180 

2 

     
22 22

3 1
1

      2 2,   1, 2, 3

[100 1 ]

          

j j j
j

i

x

x i

R x x x




   

  
 

xi=[1.000000, 

1.000000] 

i=1,2,3 

[0.000000, 0.000000] - - - 180 

 
 

Table-5: Computational results & comparison of the proposed method with others methods for five variables test functions  

 

Sl. 

N

o. 

Test Problem Optimal 

Solution 

Min. Objective Value No. of Function Evaluations 

TIAM IAG GA-SQ Proposed 

Method 

1 
  2

5

1

1

 100 100,  1, 2, ..., 5

,

         

i
i

i

F x x

x i





   


 

xi=[0.000000, 

0.000000] 

i=1,2,…,5 

[0.000000, 0.000000] - - - 300 

2 

     
24 22

5 1
1

      2 2,   1, 2, ..., 5

[100 1 ]

          

j j j
j

i

x

x i

R x x x




   

  
 

xi=[1.000000, 

1.000000] 

i=1,2,…,5 

[0.000000, 0.000000] - - - 280 

 

 
Table-6: Computational results & comparison of the proposed method with others methods for ten variables test functions  

 

Sl. 

N

o. 

Test Problem Optimal 

Solution 

Min. Objective Value No. of Function Evaluations 

TIAM IAG GA-SQ Proposed 

Method 

1 
  2

10

1

1

 100 100,  1, 2, ...,10

,

         

i
i

i

F x x

x i





   


 

xi=[0.000000, 

0.000000] 

i=1,2,…,10 

[0.000000, 0.000000] - - - 600 

2 

     
29 22

10 1
1

      2 2,   1, 2, ...,10

[100 1 ]

          

j j j
j

i

x

x i

R x x x




   

  
 

xi=[1.000000, 

1.000000] 

i=1,2,…,10 

[0.000000, 0.000000] - - - 560 
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Table-7: Computational results & comparison of the proposed method with others methods for fifty variables test functions  

 

Sl. 

N

o. 

Test Problem Optimal 

Solution 

Min. Objective Value No. of Function Evaluations 

TIAM IAG GA-SQ Proposed 

Method 

1 
  2

50

1

1

 100 100,  1, 2, ..., 50

,

         

i
i

i

F x x

x i





   


 

xi=[0.000000, 

0.000000] 

i=1,2,…,50 

[0.000000, 0.000000] - - - 3000 

2 

     
249 22

5 1
1

      2 2,   1, 2, ..., 50

[100 1 ]

          

j j j
j

i

x

x i

R x x x




   

  
 

xi=[1.000000,

1.000000] 

i=1,2,…,50 

[0.000000, 0.000000] - - - 2800 

 

 

 

7 CONCLUDING REMARKS 
 

We have reported a technique to find the global solution of unconstrained optimization problems of different types. 

The proposed method is based on interval computing technique and interval order relations. In this technique, the 

values of the interval valued objective function are computed in each of the sub-regions and then the better one is 
chosen. Then, the sub-region having better objective value is again subdivided into two sub-regions and the process 

continued. The definitions of bounded trigonometric function of an interval are given. To illustrate the performance 

of the technique, some numerical examples have been solved and the results are also presented. The test functions 

are available in the literature and they are of single variable as well as several variables. From the numerical results, 

it has been seen that the proposed method possesses the merits of global exploration, fast convergence, and it can 

find the optimal or close-to-optimal solutions. This technique, which has been applied for finding the best value in 

each sub-region, gives the better result for smaller sub-region. For future research, one may apply the same 

methodology for other type of optimization in operations research.  
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