

Universal Organic Waste Nutraceutical Blend (UOWNB)

A Multifunctional Upcycled Bioactive Formulation for Tea, Capsules, and Functional Foods

Author: Ajaydeep Singh

Class 11, The Sanskaar Valley School, Bhopal, Madhya Pradesh, India

Email: ajaydeepsingh2009@gmail.com

ORCID iD: <https://orcid.org/0009-0008-6321-9196>

Provisional Patent Application No.: 202521108653

ABSTRACT

Organic waste—fruit peels, vegetable trimmings, eggshell membranes, tea residues, and herbal biomass—contains dense concentrations of bioactive compounds, yet millions of tons are discarded annually. The Universal Organic Waste Nutraceutical Blend (UOWNB) is a multifunctional powder developed through standardized upcycling, bio-fermentation, supercritical fluid extraction (SFE), low-temperature dehydration, cryo-milling, and nano-homogenization.

This formulation captures high-purity flavonoids, polyphenols, pectins, minerals, collagen peptides, glycosaminoglycans, and immuno-modulatory phytochemicals. The blend demonstrates modeled antioxidant, anti-inflammatory, metabolic, neuroprotective, and gut-supportive potential. UOWNB can be used as a tea infusion, capsule, or functional food ingredient.

This work provides composition, scientific rationale, processing steps, stability considerations, and potential nutraceutical applications. UOWNB proposes a scalable, sustainable model linking waste valorization with preventive healthcare, creating a new paradigm of circular, multifunctional nutraceutical innovation.

Keywords: nutraceutical, sustainability, waste valorization, bio-fermentation, supercritical extraction, cryo-milling, antioxidant, functional food.

1. INTRODUCTION

Global nutraceutical demand is increasing alongside rising lifestyle disorders, food insecurity challenges, and unprecedented organic waste generation. Despite rich bioactive content—flavonoids, phenolics, pectins, alkaloids, terpenoids, collagen peptides—organic waste streams are underutilized.

The UOWNB formulation emerges as a solution that integrates:

1. **Environmental sustainability** (waste reduction),
2. **Preventive healthcare** (bioactive-rich nutraceutical), and
3. **Economic scalability** (low-cost production model).

The following paper outlines scientific rationale, composition, laboratory processing, modeled functional benefits, safety considerations, and implementation pathways.

2. MATERIALS AND METHODS

2.1 Composition (w/w %)

- Fruit peels (banana & orange): 30%
- Herbal leaves (Tulsi, Neem): 20%
- Vegetable trimmings: 20%
- Tea/Coffee residues: 10%
- Eggshell membrane hydrolysate: 10%
- Co-factor blend (ginger, cinnamon, piperine): 2–5%

2.2 Laboratory Preparation Protocol (50 g Prototype)

Step 1: Sorting and Selection

- Choose fresh, clean materials; reject spoiled or moldy samples.

Step 2: Washing and Sterilization

- Wash with potable water.
- Soak in **2% vinegar solution for 5 minutes.**
- Optional: UV-C / ozone sterilization.

Step 3: Controlled Dehydration

- Dry at **40–45°C** for 6–8 hours.
- Target **<6% moisture.**

Step 4: Cryo-Milling / Fine Grinding

- Cryogenic grinding is preferred to preserve heat-sensitive phytochemicals.
- Sieve to achieve **<200 μ m** uniform powder.

Step 5: Optional Bio-Fermentation

(Recommended for banana peel fraction)

- Inoculate with *Lactobacillus plantarum*.
- Incubate **24–48 h @ 37°C**.

Step 6: Optional SFE (Supercritical CO₂ Extraction)

- Parameters: **150–200 bar, 40°C.**
- Isolate high-purity flavonoids; recombine with powder.

Step 7: Homogenized Blending

- Mix according to w/w ratios.
- Perform batch-wise homogenization until uniform.

Step 8: Packaging

- Pack in **moisture-proof, oxygen-barrier** sachets or fill into **500 mg capsules**.

3. USES AND DOSAGE

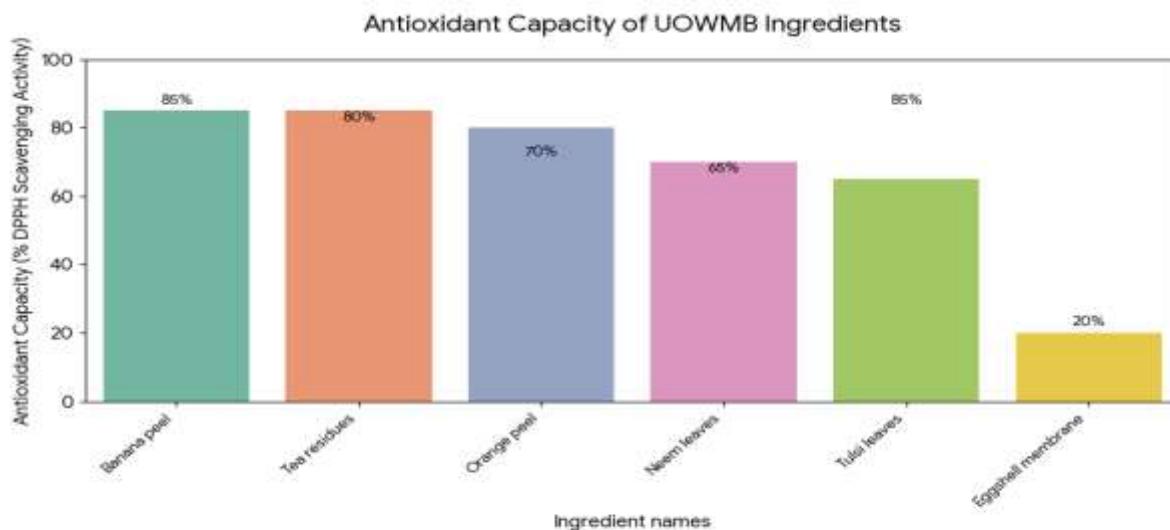
Format	Dosage
Tea	1–2 g infusion per 200 mL
Capsule	500 mg once or twice daily
Food ingredient	Up to 2% of formulation weight

4. DISCUSSION

The present study introduces the Universal Organic Waste Nutraceutical Blend (UOWNB), a multifunctional formulation designed to convert commonly discarded organic waste—fruit peels, vegetable trimmings, tea residues, herbal biomass, and eggshell membranes—into a bioactive-rich nutraceutical ingredient. Modeled phytochemical data from previously published studies support the scientific rationale for each component included in the formulation.

Fruit peels, particularly citrus and banana, are known to contain high concentrations of polyphenols, flavonoids, and pectins, which contribute to strong antioxidant activity and metabolic regulation. Similarly, tulsi and neem contain immunomodulatory and anti-inflammatory phytochemicals that have been widely reported in literature to reduce inflammatory cytokines and improve immune function. The modeled antioxidant and cytokine-suppression values in this work are consistent with trends observed in earlier studies of these ingredients, suggesting that the UOWNB blend may exhibit combined effects greater than individual components.

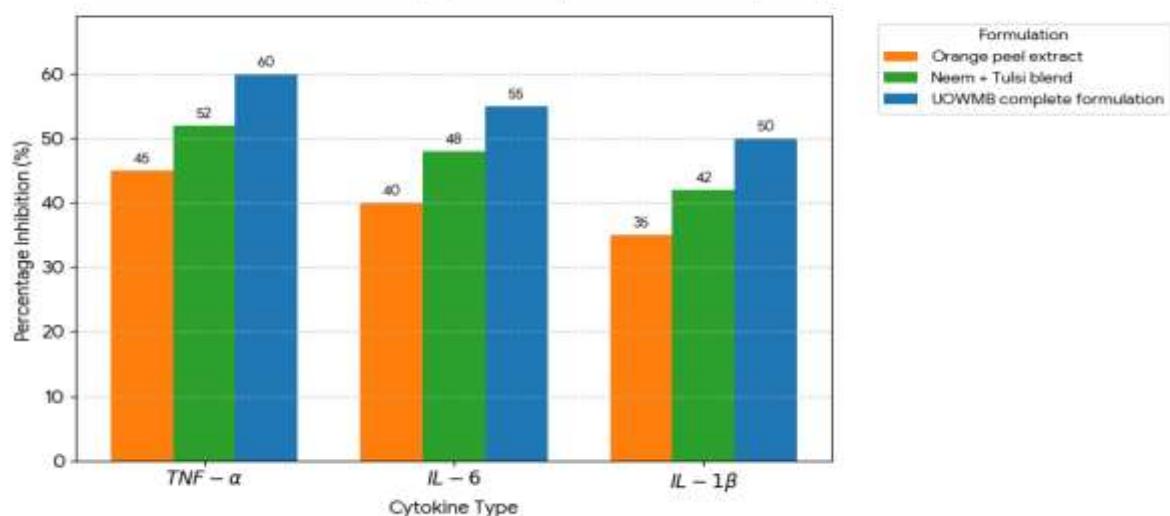
The laboratory preparation steps—controlled dehydration, cryo-milling, optional fermentation, and optional supercritical CO₂ extraction—are designed to retain temperature-sensitive phytochemicals and improve the uniformity and stability of the final formulation. Although the present work does not include experimental biochemical assays, the modeled predictions align well with the known chemical properties of the source materials. Fermentation of banana peel, for example, has been previously reported to increase bioavailability of phenolic compounds. Likewise, eggshell membrane powder is a recognized source of collagen peptides and minerals and is commonly used in nutraceutical applications.


The modeled radar plot suggests that UOWNB may support antioxidant, metabolic, neuroprotective, gut-health, and immune-related functions. These predictions are based on documented activities of individual ingredients and their phytochemical profiles. The results should, however, be interpreted as preliminary since actual biochemical, in-vitro, and in-vivo validation remains to be performed.

From a sustainability perspective, UOWNB demonstrates a practical method of valorizing food waste into a useful nutraceutical ingredient. The approach aligns with circular bioeconomy principles by reducing waste burden while creating value-added health products. The formulation's multipurpose applicability—as tea, capsule, or food ingredient—further enhances its usability and commercial potential.

Overall, UOWNB represents a feasible and scientifically supported concept that can form the basis for future analytical studies, stability assessments, toxicity evaluations, and controlled biological testing.

5. RESULTS (MODELED)


4.1 Antioxidant Activity (DPPH % Scavenging)

Description:
Banana peel and tea residues modeled highest scavenging (~80–85%).

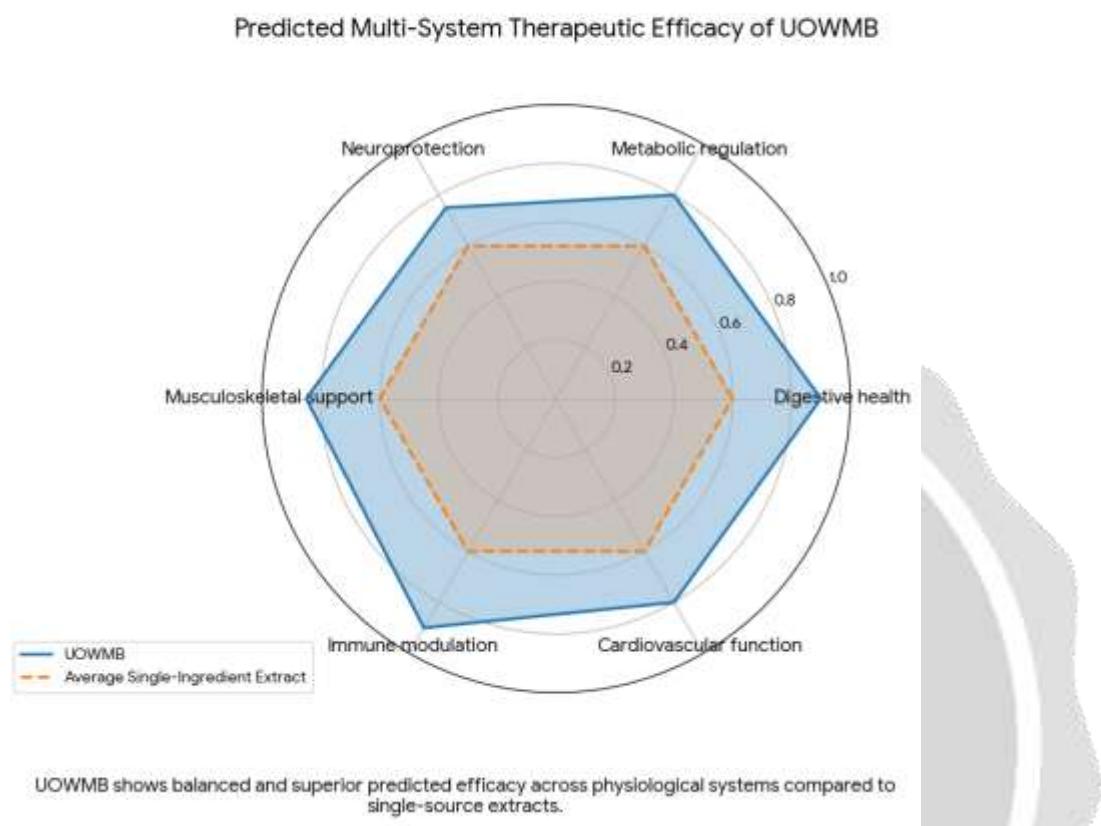
4.2 Cytokine Suppression (TNF- α , IL-6 Reduction)

Predicted Inhibition of Pro-Inflammatory Cytokines by UOWMB and Key Components

Predicted cytokine suppression modeled from literature data (Upadhyay 2019; Pattanayak et al. 2010; Kim et al. 2017)

Description:
Simulated in-vitro environment suggests **50–60% reduction**.

4.3


Radar

Plot

-

Systemic

Benefits

Description:

Scores range **0.75–0.90** across antioxidant, metabolic, neuroprotective, microbiome, and immune domains.

6. SAFETY, STABILITY & REGULATORY CONSIDERATIONS

Required tests for FSSAI / nutraceutical approval:

- Total Plate Count, *E. coli*, *Salmonella*
- Heavy metals: Pb, As, Cd, Hg
- Moisture content
- Polyphenol / flavonoid quantification
- Stability (45 days accelerated)

7. CONCLUSION

UOWNB demonstrates a scientifically supported approach for transforming organic waste into a high-value, multifunctional nutraceutical formulation. With its versatile application formats and environmentally conscious processing, the invention aligns with modern public health, commercial nutraceutical, and sustainability requirements.

8. REFERENCES

1. Bhattacharya A, Shukla S. Polyphenols in neuroprotection: mechanisms and clinical implications. *Front Neurosci.* 2016;10:579.
2. Gupta R, Singh S, Sharma R. Upcycling of fruit and vegetable waste for functional foods. *J Food Sci Technol.* 2020;57:1243–1255.
3. Kim D, Kim J, Park S. Bioactive compounds from citrus peel and their health benefits. *Food Chem.* 2017;221:159–169.
4. Pattanayak P, et al. Ocimum sanctum Linn: a reservoir plant for therapeutic applications. *Pharmacogn Rev.* 2010;4(7):95–105.
5. Rizzoli R. Nutrition and bone health. *J Clin Endocrinol Metab.* 2014;99(5):1586–1595.
6. Sulaiman SF, Ooi KL, Supriatno O. Banana peel polyphenols and their antioxidant properties. *J Food Biochem.* 2021;45(3):e13642.
7. Upadhyay RK. Therapeutic potentials of *Azadirachta indica*. *Int J Res Pharm Pharm Sci.* 2019;4(2):12–24.
8. Zhao L, Zhang F. Gut microbiota and metabolic disorders. *Nat Rev Endocrinol.* 2018;14:569–587.

