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Abstract 

 In this paper we describe data exploration techniques designed to classify DNA sequences. Several 

visualization and data mining techniques were used to validate and attempt to discover new methods for 

distinguishing coding DNA sequences, or exons, from noncoding DNA sequences, or introns. The goal of the data 

mining was to see whether some other possibly nonlinear combination of the fundamental position dependent 

DNA nucleotide frequency values could be a better predictor than the AMI[6]. We tried many different 

classification techniques including rulebased classifiers and neural networks. We also used visualization of both 

the original data and the results of the data mining to help verify patterns and to understand the distinction 

between the different types of data and classifications. In particular, the visualization helped us develop 

refinements to neural network classifiers, which have accuracy's as high as any known method. In the conclusion, 

we discuss the interactions between visualization and data mining and suggest an integrated approach. 

 

1 Introduction 
 

 

The international effort called the Human Genome Project is rapidly sequencing the complete 
DNA sequences of all 24 human chromosomes. As well, the chromosomes from a number of other organisms are 

being entirely sequenced. The DNA component of chromosomes are long linear molecules comprised of strings of 

the four nucleotides (A, C, T, G), the information bearing chemical units. Coding sequences (exons) are 

interspersed by noncoding sequences(introns) along the chromosomes whose information encodes protein 

structures. Transcription of the coding DNA sequence into mRNA, which is then translated into proteins in the cell 

comprise the general flow of information. This process is responsible for all normal cellular functions as diverse as 

development into multicellular organisms, organ development, the immune system, to name a few, as well as 

abnormal function such as cancer, birth defects, etc. 
 
 
 

The current approach for finding genes (protein coding sequences) is both experimental and computational. Any 

small increase in the accuracy of computer classification can therefore result in substantial time and cost savings. In 

this paper we describe our experiences to harness data exploration techniques to classify DNA sequences. 

 

In order to use visualization and data mining techniques to develop new methods for distinguishing coding DNA 

sequences (exons) from noncoding DNA sequences (introns), it is necessary to represent symbolic DNA 

sequences by numbers or vectors. It has been demonstrated by Fickett et al.[4] that the proper choice of this 
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representation is as important as the later processing of the numbers by neural nets or other classification schemes. 

The representation of DNA sequences we chose was guided by the recent discovery that a nonlinear correlation 

statistic for DNA sequences, called the average mutual information (AMI), [6], is capable of distinguishing coding 

from noncoding DNA sequences in all taxonomic classes ranging from the most simple to the most complex 

organisms. mathematically, the AMI is a nonlinear function based on the vector of 12 frequencies p_i^k by which 

the nucleotide i = a, c, g, t appears in position k = 1, 2, 3 relative to a given reading frame in a small segment of a 

DNA. 

 

2 Data Mining 
 
2.1 Tools 
 

 

A number of data mining tools are available. Some of the ones we used include Tooldiag[12], and Stuttgart Neural 

Network Simulator SNNS [15,17] . We concentrated our efforts on applying Clementine[2]. Clementine is a data 

mining suite based on the data flow visual programming paradigm similar to AVS or IBM's Data Explorer. It 

provides four machine learning modules: two rulebased algorithms, a standard neural net (multi layer 

Perceptron), and a Kohonen neural net for clustering, each with default settings. Elaborate tuning is possible but 

not necessary to get some early results. One rulebased classifier in Clementine is the C4.5 algorithm by Quinlan 

[11]. 
 

2.2 Data Mining DNA Sequences 
 

 

Fickett [4] developed databases consisting of sequences of known exons and introns and 
described the accuracy of several classification methods. Some methods depend on knowing the particular starting 

and ending sequences and most require elaborate training on exon and intron data sets from the organism under 

consideration. In [6] the Mutual Information function was developed and studied. It provides a nonlinear measure 

of the correlation between a particular nucleotide and another n nucleotides away. 

 

For biochemical reasons coding sequences possess a triplet codon information structure. Thus nucleotides at 

positions 3, 6, 9, and generally 3n , positions away from each other have higher correlations. Thus we only need to 

look at the frequencies of A, C, T, G extracted from a small segment of DNA, at positions 1, 2, and 3. [7] defines 

the AMI as a particular combination of these 12 values and uses it as a predictor for distinguishing exons from 

introns. It classifies DNA sequences with a high degree of accuracy (76 for 108 bp and 81% for 162 bp). Is it 

possible that there are other functions of these values that can even better distinguish exons from introns? 

 

We decided to use data mining to help find these functions. In our initial study we examined several thousands of 

Fickettís sequences of various length exons and introns. Our first task was to divide the data into training and test 

sets. The training sets were used to build a classifier, similar to the rulebased ID3 [10], and a neural net. The test 

sets were used to evaluate the accuracy of the classifier. 

 

To date the various classification programs have reached accuracy's between 73 and 81 percent[4]. This provided a 

baseline that we were comparing against. Since there are only two classes of data any classifier should reach at 

least a minimum accuracy of 50%. 
 

Initially, only 200 points (100 exons and 100 introns) were used to train Clementineís 2 rulebased classifiers and 

neural net. We used DNA sequences of 162 base pairs for all of our classifiers. The default NN used 12 input nodes 

, 4 hidden layers and 1 output node. After training the rulebased classifiers were correct 93 and 94 percent of the 

time while the NN was only about 80% accurate on the small training data. However, with 800 nontraining 

samples (400 exons and 400 introns) we obtained the following accuracy: 
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Table -1 Data Generation for Visualization 

 
 

 

 

These initial results were very promising for the neural network, since we knew we could potentially tune the 

network for better performance, and we still were using a small training set. 

At this point we were ready to explore other packages, but more pressing was trying to understand in greSSater 

detail the structure of the data we had generated. Unfortunately, neural networks and classification rules do not 

easily reveal their insights into the data. We wanted to "see" these differences! Visualization was needed. 

 

3 Visualization 
 
We used several visualization approaches to look both at the original Fickett data as well as processed data. 
 

3.1 Radial Visualizations 
 

 
Spring constants can be used to represent relational values between points [1,9]. We developed a radial 
visualization(Radviz), similar in spirit to parallel coordinates (lossless visualization), in which ndimensional data 

points are laid out as points equally spaced around the perimeter of a circle. One end of n springs are attached to 

these n perimeter points. The other ends of the springs are attached to a data point. The spring constant Ki equals 

the values of the ith coordinate of the fixed point. Each data point is then displayed where the sum of the spring 
forces equals 0. All the data point values are usually normalized to have values between 0 and 1. 

 

For example if all n coordinates have the same value the data point will lie exactly in the center of the circle. If the 

point is a unit vector then that point will lie exactly at the fixed point on the edge of the circle (where the spring for 

that dimension is fixed). Many points can map to the same position as in the Exvis displays [3]. This represents a 

nonlinear transformation of the data which preserves certain symmetries and which produces an intuitive display.  

 

 

 

 

 

 

 

 

 

 

Correct Wrong 

Neural Net 638 ( 79.55%) 164 (20.45%) 

C4.5 RULE 551 ( 68.70%) 251 (31.30%) 

Clementine 

Rule 

 

573 ( 71.45%) 
 

229 (28.55%) 
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         Figure 1 Radviz 1000 exons(red) 1000 introns(green) 

 

Figure 1 displays 2000 points using Radviz: red points are exons and green points are introns. Most points lie close 

to the center implying equal forces. However, introns lie closer to the center than exons. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2 500 Introns  expanded X 10 

 
In Figure 2, 500 Introns are displayed, zoomed by a factor of 10 with the point size increased. In this picture we 

discovered a "symmetry" of the data around a line drawn between dimensions c2 & g2 and a1 & t3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3 2000 pts expanded 5 times 

 
Figure 3 displays 2000 points zoomed up by a factor of 5 . In this picture we can see that the 
exons (red +) are more spread out, and the introns (green ) are closer to the center of the circle. 
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 Figure 4 Expanded X 8 

 
 

4 Conclusion&Future directions 
 

 

This case study demonstrates the need for integrating multidimensional visualization tools with data mining tools. 

Many packages provide standard scatter plots, and some have 3d plots. However, reducing data to 2 or 3 

dimensions from many is a difficult task (which dimensions to select) and one which always produces the feeling 

that something is missing (is the other dimension more important ?). Analytic tools do help. Neural nets, 

classifying and clustering algorithms, are clearly powerful but they still need to be guided by human insight. 

However, when the only output of analytic results presented is a few numbers such as "82% accuracy", or some 

500 line rule of nested if statements, the user is left stranded. Does the user understand the rules? Can the user 

believe the accuracy? 

 

Thus, there is a need to integrate the analytic with the visual [5]. Such integration with intelligent visualizations 

which automatically map data dimensions to the "best" display parameters such as color, texture, or the coordinate 

systems will prove attractive [e.g., 13]. 
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