
Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4057

Web Scraper Using Selectors

Ms. Rashmi Bhosale, Prof. Prashant Jawalkar

Student, Computer Department, JSPM’s BSIOTR, Maharashtra, India
Associate Professor, Computer Department, JSPM’s BSIOTR, Maharashtra, India

ABSTRACT
Today enormous amount of valuable information is available on the net and it is growing at very fast rate. Thus we

can call the web as chief knowledge store house. Web scraper is defined as a system that automatically extracts

information from websites. Web data analysis applications requires web data extraction. Early techniques visits the

interested web sites and constructs the wrapper then extracts the data using that wrapper but this process needs a

lot of time. Thus a new technique known as Web Scraper Using Selectors (WSUS) is i ntroduced. WSUS constructs

the patterns for selected data sections automatically and extracts data using patterns. Pattern generated by WSUS is

relative rather than absolute which makes it stable. It extracts data without comparing the DOM trees.

Keyword : - Bad tag; Basic block; DOM tree; Web scraper, Wrapper

1. Introduction

A system that automatically extracts information from websites is called as Web Scraper. Web scraping is also

called as web data extraction or web harvesting. Day by day, the volume of information available on the net is

growing very rapidly, thus we can call the web as chief knowledge store house. This information is very useful and

it can be used in various applications

 Web sites provides us huge amount of information about various topics in different formats. The task of

manually locating the data of interest and then extracting it from the web sites needs huge efforts. To extract the

data, existing techniques builds programs called as “extractor” or “wrapper” or “crawler” . These wrappers have

some knowledge about the structure of web pages. The web pages belonging to the same web site have common

structure or template. Templates are often fixed and data values are changing across the web pages. It is observed

that structure of web pages changes often and maintaining the crawler can be impractical and expensive

Thus we have proposed a new technique called as Web Scraper Using Selectors(WSUS). It works in three

stages: Web page renderer, section selector pattern generator and data extractor.

The rest of the paper is structured as follows: Section 2 explains existing techniques. Section 3 presents

proposed system architecture in details. Section 4 describes experimental setup. Section 5 compares proposed

system with existing system. Section 6 concludes the paper.

2. Existing Systems

IEPAD[14] is an automatic data extraction system. It works in three phases, an extraction rule generator, pattern

viewer and extractor . Extraction rule generator accepts input web page from user. Pattern viewer discovers

repetitive patterns. Extractor module extracts data from similar pages according to the extraction rule provided by

the user.

ViDE[3] extracts data records from deep web pages using visual information . It works in four steps . First, it obtains

visual representation of given web page and convert this representation into a tree called as Visual Block tree. In

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4058

second step, it extracts data records from the VB tree. In the third step, it divides scraped data records into various

data items. In the fourth step, it generates set of visual extraction rules.

ROADRUNNER[15] is a page-level data extraction system. It uses template of first input web page as a initial

wrapper and checks whether next pages can be created by using the initial wrapper or not. If not, then it will modify

initial template accordingly.

 EXLAG[11] consists of two phases, Equivalence Class Generation Module(ECGM) and analysis phase. In the

ECGM phase, for given input web pages it obtains equivalence classes and finds out reoccurring equivalence

classes. In the analysis phase, from large and repeatedly occurring equivalence classes it generates template and then

using that template it will extract data.

 DELA[10] generates wrapper in two steps. In the first step, it compares DOM trees of two web pages and finds out

data-rich sections web pages. In the second step, it discovers repeated patterns by using suffix trees.

DEPTA[7] finds out repeated substrings in the tag tree by comparing adjacent substrings having sa me parent.

FiVaTech [2] extracts data and detects schema in two phases namely tree merging and schema detection. In the first

phase, it will merge DOM trees of all input web pages and constructs fixed/variant pattern tree. In the second phase

this tree is used to identify the schema and template.

3. Proposed System

The proposed system WSUS consists of three important components. First component is a web page renderer, which

accepts an URL of the page from user and displays it in the browser. After displaying the page it will constructs the

DOM tree of the page. Second component is a section selector which will partition the web page into various data

regions. User can then easily select the data section. Third component is pattern generator and data extract or which

will generate the patterns for selected data sections then data extractor will use those patterns to extract data. Fig 1

shows various components of WSUS.

Fig -1 Components of WSUS

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4059

3.1 Web Page Renderer

It performs following three tasks

 URL acceptor

It will accept the URL from user and displays the requested page in the browser. Rendering is the process

of drawing a rectangular box around each visible node on the web page. Each box is called as visual block.

One block may contain many inner blocks. The block which does not contain any inner block is called as

basic block and may hold data value. Basic blocks are represented by brown color border. Fig 2 shows

various data blocks.

 Repair ill or bad tags

Once the document is retrieved, it will start repairing the bad or ill formatted tags. This process find out

missing tags and insert those missing tags and it will remove unnecessary tags. For example !pr tag which

is the start tag in document but it is the end tag that does not have a start tag. It also checks nesting of all

tags.

 DOM tree generator

DOM tree is generated after repairing all ill or bad tags. Each html element has end tag, optional attributes,

start tag and optional embedded content. Each web page consists of zero or one document type node, zero

or more comments and one root element node. Syntactic tokens are then generated using the token tree. Fig

3 shows sample code and corresponding DOM tree.

Fig -2 Web Page Renderer displays various data blocks surrounded by brown color rectangle

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4060

Fig- 3 Sample code and corresponding DOM tree fragment

3.2 Section Selector

It will divide the input web page into various data sections. Here we will divide the web page into various data

sections like list section, single valued section, and multi valued section etc. It performs following tasks.

 Identify sections

To carry out this task an interactive user interface will be used. User will identify various data sections in

the input web page. Sections includes paragraph, list and table etc. User selects the data section and it will

be highlighted. Fig 4 shows highlighted user selected section.

 Identify tokens

In this task, for selected data section it will gather semantic tokens. These tokens are used by the data

extractor to traverse the DOM tree and highlight interested semantic tokens in the source page.

 Identify hierarchy

In this task, for selected section hierarchical parent structure is retrieved. It gives a set of semantic tokens.

Pattern ambiguity (if any) is then resolved using these tokens.

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4061

Fig -4 Highlighted user selected section
3.3 Pattern Generator and Data Extractor

Here we will focus on pattern generation first. DOM tree nodes are categorized into 12 types as element, text, attr,

entity reference, cdatasection, entity, document type, notation, comment, processing instruction, document and

document fragment. We are interested in attr node only. For attr node, node name gives attribute name, node type is

attr and node value gives attribute value. To construct patterns, we will use

attr node as CSS selector. There are different types of CSS selectors like attribute selectors, universal selector,

descendant selectors, child selectors, type selectors, adjacent sibling selectors, class selector and id selector.

 Attribute Selector

Attribute selector specifies rules that will be used to match elements having certain attributes. It matches in

following ways:

i. [att]

This type represents an element that has “att” attribute then whatever may be the value of the attribute

it will be matched.

ii. [att=val]

This type matches an element which has “att” attribute and value is “val”.

iii. [att~=val]

Here “val” is a white space separated list of words. It will matches an element with the “att” attribute

and its value is one of the word represented by “val”.

iv. [att|=val]

It matches an element having attribute “att” and value either starting with “val” and followed by “ -” or

being “val” itself.

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4062

 Class Selectors

Class attribute is denoted by the period (.) or (~=) notation. Thus div.value and div[class~=value] are

same. Here, the attribute value must be preceded by “.”. For example : “.intro”: will select the elements

which has class=”intro”.

 ID Selectors

There are attributes of type ID in the document. Attributes of type ID n ever have same value. Elements in

document have unique ID. CSS ID selector’s syntax is “# ID_value”. For example : “#middlename”, will

retrieve the element having id=”middlename”. Selected section is an element of DOM tree.

Fig -5 Part of DOM tree of rajdhani train details web page

Fig 4 shows the web page of Indian rail which displays information regarding rajdhani train names and other details.

The part of DOM tree for rajdhani train web page(Fig 4) is shown in fig 5. Now we will see the algorithms t o

retrieve the attributes and to construct the pattern.

Algo- 1 Attribute retrieval

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4063

Algo -2 ConstructPattern

From the attributes retrieved by algo 1, a pattern for selected table is generated using algo2. For example :

table[width=100%][cellspacing=1][cellpadding=0][border=0][class=table_border].

3.4 Data Extractor

Using the patterns generated in previous step, data extractor will extract data. Algo 3 shows algorithm “ExtractData”

to extract the data. Here “q” is a data structure which holds the patterns. “l” is the list. First this algorithm matches

the selected element in the DOM tree. Once element and all of its attributes are matched, data from the element will

be retrieved.

Ambiguity arises when pattern identifies two or more data sections. In this case algo 2 fails to find out

correct data section. For example a web page can have two similar tables, one is under td tag and another is under

div tag as shown in fig 6. Here pattern is matched twice and ambiguity arises. To resolve this ambiguity pattern

validator is called.

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4064

Algo -3 Extract Data

Fig -6 Ambiguity in identifying table section

3.5 Pattern Validator

When the ambiguity arises while retrieving the data, there is a need of validating the pattern. To avoid such kind

of ambiguity we will add the parent of selected section in the pattern. For example

td>table[width=100%][cellspacing=1][cellpadding=0][border=0][class=table_border].

div>table[width=100%][cellspacing=1][cellpadding=0][border=0][class=table_border].

Now, this two patterns will uniquely identify table under div tag and td tag. Thus data can be retrieved using our

algorithm.

3. EXPERIMENTAL SETUP

Experiments will be performed on a m/c with an Intel Core 2 Duo processor working at 2.2 GHz clock speed and

800 MHz FSB, with 4 GB of RAM.

Java Development Kit 1.7 and Windows 7 operating system are used to perform the experiments.

It is assumed that input web page doesn’t implement any anti-scraping technique.

4. EXPERIMENTAL RESULTS

 Table 1 shows time based comparison between existing system and proposed system. Column 3 shows time

required by existing system to extract data and column 4 shows time required by proposed system to extract data

from respective webpages.

Websites No of Pages

Tested

Existing System Time

Requirement(in ms)

Proposed System Time

Requirement(in ms)

Amazon(Cars) 10 13672 128

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4065

Amazon(Artists) 10 30681 178

Buy 2 7500 50

Majorleaguebaseball

(Players by name)

10 36926 380

Majorleaguebaseball

(Players by statistics)

10 13672 265

Jewelery 2 77172 43755

Table -1 Time based comparison

As shown in below fig 7, the line graph represents the time analysis for the sites given in the table. Here, X-axis

represents the name of website on which experiment is done and Y-axis represents time in milliseconds. Here for Y-

axis value of one unit is 1000 ms. Blue line represents time required by existing system for extracting data from web

pages and orange bar represents time required by proposed system for extracting data from same web pages .

Fig - 7. Time Analysis for tested sites

Table 2 shows performance of our proposed technique. SI indicates section identification, DE indicates

data extracted. An cr and pcr means correct and partially correct respectively, whereas wr means wrong. Column 2

of table contains the information about the page source i.e. URL of page. Column 2 indicates description of pages.

Column 3 indicates number of pages from each source. Column 4 and 5 indicates number of pages from which data

section is correctly identified and number of pages from which data section is partially correct or wrongly identified.

Column 6 and 7 indicates number of pages from which data section is correctly retrieved and number of pages from

which data section is partially correct or wrongly retrieved. For measuring performance of our system, we used 290

pages. Out of 290 pages, data section of 290 pages is correctly identified. For measuring performance we considered

partial correct data as wrong data. After evaluation we got values of precision and recall as 100%. From

experiments, we got conclusion that, our system is 100% efficient for web pages containing data in any format.

We are comparing our system with RoadRunner [15]. Experiment shows that our system is much efficient

than RoadRunner in detecting sections and extracting data. We used same input pages, as those are used for

evaluating RoadRunner. RoadRunner failed to extract correct data from about 21 pages. Data retrieved by

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4066

RoadRunner is partial from collection “national team info” from uefo.com. So performance of our system, DEUDS

is much better than Road Runner.

Page information SI DE

Page src Page info NOP cr wr/pcr cr
wr/pc

r

amazon.com

pop artist by style 19 19 0 19 0

amazon.com

cars by brand 21 21 0 21 0

buy.com

product subcategories 20 20 0 20 0

buy.com

product information 10 10 0 0 0

rpmfind.net

packages by distribution 20 20 0 20 0

rpmfind.net

packages by maintainer 20 20 0 20 0

uefa.com

players in the national

team
20 20 0 20 0

uefa.com

national team info 20 20 0 20 0

wine.com

accessories 11 11 0 11 0

wine.com

wines by producers 10 10 0 10 0

majorleguebase

ball.com

players by initial 10 10 0 10 0

majorleguebase

ball.com

player statistics 10 10 0 10 0

nba.com

team stats 10 10 0 10 0

nba.com

team roaster 10 10 0 10 0

RISE

LA Restaurants 28 28 0 28 0

RISE

Pharma Web 10 10 0 10 0

RISE

Corel 21 21 0 21 0

Indianrail.com Indian rail 4 4 0 4 0

Flipkart.com Eng. books 1 1 0 1 0

Dejavutrands.co

m
Computers and laptops 5 5 0 5 0

shopping.yahoo.

com
laptop 10 10 0 10 0

 total 290 290 00 290 0

 Precision 280/290 100% Recall 290/290 100%

Vol-2 Issue-3 2016 IJARIIE-ISSN(O)-2395-4396

2727 www.ijariie.com 4067

Table 2 Performance Measure of web scraper tool System

5. CONCLUSIONS

Web data extraction plays vital role in web data analysis applications. Existing systems like

RoadRunner[15], DELA[10], DEPTA[7], IEPAD[14] have some limitations. Thus in this paper, we have proposed a

new technique called as Web Scraper Using Selectors. WSUS automatically discovers patterns for selected data

section and using those patterns it extracts data. If the structure of web site changes you don’t need to change

scraper, scraper is able to adapt these changes quickly. It works in three phases namely web page renderer, section

selector and pattern generator and data extractor. In earlier techniques , using training examples extraction rules were

identified. In this paper, we have proposed an unsupervised approach to discover the patterns and generated pattern

is stable.

5. ACKNOWLEDGEMENT

I would like to thank Prof. G. M. Bhandari(HOD, Department of Computer, JSPM’s BSIOTR, Pune) and Prof.

Prashant Jawalkar(Assistant Professor, Department of Computer, JSPM’s BSIOTR, Pune) for sharing their pearls of

wisdom during development of this paper.

6. REFERENCES

[1]. S. Shinde and S. Joshi, “Schema Inference and Data Extraction from Templatized Web Pages ,” International
Conference on Pervasive Computing (ICPC) 2015 IEEE.

 [2]. Mohammed Kayed and Chia-Hui Chang, “FiVaTech: Page-Level Web Data Extraction from Template Pages,”
IEEE transactions on knowledge and data engineering, vol. 22, no. 2 , pp. 249-263, February 2010.

[3]. W. Liu, X. Meng, and W. Meng, “Vide: A vision-based approach for deep web data extraction”, IEEE
Transactionson Knowledge and Data Engineering, 22:447–460, 2010.

[4]. “Extracting data records from the web using tag path clustering,” In WWW Conference, pp. 981–990, 2008.

[5]. H. Zhao, W. Meng, and C. Yu. “Mining templates from search result records of search engines”, In SIGKDD
Conference, New York, NY, USA, pp. 884–893, 2007.

[6]. C.-H. Chang, M. Kayed, M.R. Girgis, and K.A. Shaalan, “Survey of Web Information Extraction Systems”,
IEEE trans. Knowledge and Data Eng., vol. 18, no. 10, pp. 1411-1428, Oct. 2006.

[7]. Y. Zhai and B. Liu, “Web Data Extraction Based on Partial Tree Alignment” , Proc. Int’l Conf. World Wide
Web (WWW-14), pp. 76-85, 2005.

[8]. K. Simon and G. Lausen , “Viper: augmenting automatic information extraction with visual perceptions”, In
CIKM Conference, pages 381–388, New York, NY, USA, 2005.

[9]. H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. “Fully automatic wrapper generation for search engines,”
In WWW Conference, New York, NY, USA, pp. 66–75, 2005.

[10]. J. Wang and F.H. Lochovsky, “Data Extraction and Label Assignment for Web Databases”, Proc. Int’l Conf.
World Wide Web (WWW-12), pp. 187-196, 2003.

[11]. A. Arasu and H. Garcia-Molina. “Extracting structured data from web pages,” In SIGMOD Conference, New
York, NY, USA, pp. 337–348, 2003.

[12]. B. Liu, R. Grossman, and Y. Zhai. “Mining data records in web pages ”, In SIGKDD conference, New York,
NY, USA, pp.601–606, 2003.

[13]. A.H.F. Laender, B.A. Ribeiro-Neto, A.S. Silva, and J.S. Teixeira, “A Brief Survey of Web Data Extraction
Tools”, SIGMOD Record, vol. 31, no. 2, pp. 84-93, 2002.

[14]. C.-H. Chang and S.-C. Lui, “IEPAD: Information Extraction Based on Pattern Discovery,” Proc. Int’l Conf.
World Wide Web (WWW- 10), pp. 223-231, 2001.

[15]. V. Crescenzi, G. Mecca, and P. Merialdo, “ RoadRunner: towards automatic data extraction from large Web
sites”, Proceedings of the 26th International Conference on Very Large Database Systems (VLDB), Rome,
Italy, 2001, pp. 109-118.

[16]. S. Chakrabarti, “Mining the Web: Discovering Knowledge from Hypertext Data” Morgan Kaufmann
Publishers, 2002

[17]. R. Bhosale, P. Jawalkar, “Automatic Web Scrapping Using Visual Selecors”, International Journal of
Computer Technology and Applications(IJCTA), Vol 6 (6),1006-1009

