
Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26327 ijariie.com 2752

YOUTUBE LAYER APP

Guided By- Umesh A. Patil,

Somesh Ravindra Metri1, Sushar Sanjay Salokhe2, Siddhi Ashish Jadhav3, Suhasi Sanjay

Salokhe4

1 Application Developer,Computer Science Engineering,D.Y.Patil Technical Campus, Maharashtra, India
2 Application Developer,Computer Science Engineering,D.Y.Patil Technical Campus, Maharashtra, India
3 Application Developer,Computer Science Engineering,D.Y.Patil Technical Campus, Maharashtra, India
4 Testing and Documentation,Computer Science Engineering,D.Y.Patil Technical Campus,Maharashtra,

India
5 Testing and Documentation,Computer Science Engineering, D.Y.Patil Technical Campus, Maharashtra,

India

ABSTRACT

In the dynamic realm of digital content creation, YouTube stands as a pivotal platform, necessitating high-quality,

consistent video output from creators. The YouTuber Layer project emerges as an innovative solution to the challenges

faced by YouTubers in managing their content workflows. By streamlining the video editing, collaboration, and uploading

processes, YouTuber Layer significantly reduces the time and effort traditionally required to maintain a successful channel.

This comprehensive platform leverages modern web technologies, including Next.js, React, and Tailwind CSS, ensuring

optimal performance and a responsive user interface. With features like one-click uploads, automatic metadata population,

and collaborative tools, YouTuber Layer transforms the inefficient traditional model of multiple file transfers into a

centralized system, allowing creators to publish videos directly and efficiently. Designed for creators of all sizes, this

project positions itself as an essential resource in enhancing productivity and minimizing the risks associated with data

management, ultimately enabling users to focus on content creation and engagement.

Keyword : - Youtube Layer , Android Application, Youtuber, and Editor, Youtube Channel etc….

Introduction

YouTuber Layer is a platform that makes it easier for YouTubers to create and manage videos. It saves time by letting

editors upload videos directly, so creators can publish them to YouTube with just one click.

Using modern technologies like Next.js, React, and PostgreSQL, it provides helpful features like quick uploads,

automatic video details, and teamwork tools. The platform makes the whole process faster, reduces mistakes, and works

well for both small and large content teams

Literatures Survey

WordPress is one of the most widely used CMS platforms globally due to its flexibility and plugin ecosystem.

Several YouTube plugins, such as "YourChannel" and "Embed Plus," enable creators to manage and display video content

directly within WordPress. These plugins support playlist embedding, video gallery creation, and some level of

customization. However, these tools primarily focus on video presentation rather than back-end collaboration or

streamlined publishing workflows. They lack robust team collaboration, automation features, and direct integration with

YouTube's upload mechanisms.

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26327 ijariie.com 2753

Brightcove and Kaltura are enterprise-grade video CMS platforms that offer advanced features such as content

distribution, analytics, monetization, and user management. These platforms are suitable for large organizations and

broadcasters. While they offer rich features, their complexity, pricing, and enterprise focus make them less suitable

for small to medium YouTube content creators. Furthermore, their integration with YouTube is typically limited to

distribution and analytics rather than full-cycle video publishing.

YouTube Studio is the official web-based dashboard for creators, offering video uploads, analytics,

monetization controls, and comment management. While powerful, it is designed for individual use and lacks

collaborative workflow features such as editor uploads or multi-role access. Creators still need to manage metadata

and scheduling manually for each video.

Proposed Methodology

The development of YouTuber Layer is grounded in a modular and scalable approach that leverages modern web

and mobile technologies to streamline the workflow of YouTube content creation and publishing. The platform is built

using a full-stack architecture that includes a React-based frontend with Next.js, a backend powered by Node.js and

PostgreSQL, and a mobile integration layer through Android Kotlin using Trusted Web Activities (TWA). This

combination enables the system to offer both a seamless web experience and native-like mobile performance, while

maintaining a unified codebase and efficient deployment.

The frontend of the platform is developed using Next.js, chosen for its ability to support server-side rendering and

provide improved performance and SEO. It features a clean and intuitive dashboard where both creators and editors can

collaborate on video projects. Editors are able to upload videos, provide thumbnails, and fill in metadata such as titles,

tags, and descriptions. Real-time updates and validations ensure that the content is accurate and ready for publication.

The frontend of the platform is developed using Next.js, chosen for its ability to support server-side rendering and

provide improved performance and SEO. It features a clean and intuitive dashboard where both creators and editors can

collaborate on video projects. Editors are able to upload videos, provide thumbnails, and fill in metadata such as titles,

tags, and descriptions. Real-time updates and validations ensure that the content is accurate and ready for publication,

reducing the chances of manual errors.

On the backend, the system is built using Node.js and the Express.js framework, with PostgreSQL serving as the

relational database for storing all content-related data. The backend manages user authentication, authorization, and data

processing, while also integrating directly with the YouTube Data API. This integration enables automated publishing of

videos from the platform to the creator's YouTube channel, including the upload of files, setting of metadata, and

scheduling of publication. Authentication is handled through OAuth 2.0 to ensure secure and permission-based access to

users' YouTube accounts

.

To enhance accessibility and user engagement on mobile devices, the web application is wrapped using Trusted

Web Activities (TWA) and deployed as an Android application developed in Kotlin. This allows the web version of

YouTuber Layer to function as a fullscreen mobile app, giving users the feel of a native application without duplicating

code. The mobile version supports features such as deep linking, push notifications using Firebase, and offline functionality

via Progressive Web App (PWA) capabilities.

Deployment and version control are managed using Git and GitHub for streamlined collaboration. Continuous

deployment is set up using platforms like Vercel for the frontend, enabling automatic updates upon changes in the main

branch. Security measures including HTTPS, secure API tokens, and input sanitization are implemented throughout the

platform to protect user data and ensure safe operation.

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26327 ijariie.com 2754

Block Diagram

When the App is started, it initializes the Android system which interacts with key components like GPS and

GSM to fetch real-time location. It uses a 2G/3G/4G data connection to access and update the Database, which stores

information such as user details and emergency contacts. The app can access phone functionalities, camera, and

storage to capture and store images or videos in emergencies. Upon activation, it sends alert messages and user location

from the Database to registered contacts like Police, Family, and Friends, ensuring quick and effective response.

Application Development

Interface Design

The interface design of YouTuber Layer prioritizes simplicity, usability, and collaboration to enhance the overall

experience for both content creators and editors. The platform follows a clean, modern design language, employing a

responsive layout built with React and Tailwind CSS within the Next.js framework. The design ensures a consistent user

experience across desktop and mobile devices, with intuitive navigation and well-structured content areas.

The main dashboard serves as the central hub for all activities, tailored to the user's role—whether they are a

creator, editor, or administrator. Editors are presented with an upload interface that allows them to add videos, select

thumbnails, and fill in metadata such as video titles, descriptions, tags, and scheduled publish dates. This interface includes

validation prompts and tooltips to guide users and prevent errors. Creators, on the other hand, can view pending uploads,

make final adjustments, and publish videos with a single click, thanks to integrated YouTube API functionality. The

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26327 ijariie.com 2755

streamlined layout reduces cognitive load and helps users focus on key tasks without unnecessary distractions.

To support collaborative workflows, the interface includes real-time status indicators and role-based visibility,

enabling team members to track progress without confusion. Notifications and messages are presented through a

lightweight, non-intrusive system that informs users about successful uploads, pending reviews, and publishing updates.

The use of modal dialogs and collapsible panels ensures that advanced options and settings are accessible when needed

but do not clutter the interface by default.

The mobile interface, delivered via Trusted Web Activities (TWA) in the Android app, mirrors the web design

with optimizations for smaller screens. It retains full functionality, including video uploads and scheduling, while ensuring

smooth navigation through gesture-friendly components and adaptive layout behavior. Interactive elements are touch-

optimized, and transitions are designed to feel natural and fluid.

The user interface also incorporates accessibility features such as proper contrast ratios, keyboard navigation

support, and screen reader compatibility, making the platform usable for a diverse range of users. Overall, the interface

design of YouTuber Layer is centered on enhancing efficiency, supporting teamwork, and minimizing friction in the video

creation and publishing process.

Technology Used

1. Programming Languages:

• Java: Used for backend logic and app functionalities.

• XML: Used for designing the user interface.

2. Development Environment:

• Android Studio: IDE used for building and testing the Android application.

3. Trusted Web App:

• Web Browser: For real-time user interactivity.

• GSM / Mobile Network (2G/3G/4G): For sending alerts and messages.

4. Database:

• PostgreSQL Database: Cloud-based database for storing user data and emergency contacts.

5. Device Features Integration:

• Camera & Microphone: For capturing images or audio in emergency.

• Storage Access: To save multimedia content or logs.

6. Internet Connectivity:

• Mobile Data (2G/3G/4G): For real-time communication and database access.

Technical Implementation

The technical implementation of YouTuber Layer is built upon a robust and scalable full-stack architecture that

integrates modern web technologies, backend services, and mobile compatibility to provide a seamless workflow for video

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26327 ijariie.com 2756

creators and editors. The platform is designed to handle real-time collaboration, video uploads, and direct publishing to

YouTube while maintaining performance, reliability, and ease of use.

On the frontend, the application utilizes Next.js, a React-based framework known for its server-side rendering

capabilities and optimized performance. This choice enables fast page loads, better SEO handling, and dynamic routing.

The UI components are styled using Tailwind CSS, which allows for rapid development and a clean, responsive design.

The frontend communicates with the backend via RESTful APIs and includes client-side state management using tools

like React Context or Redux for managing user sessions and application state.

The backend is developed using Node.js with the Express.js framework, providing a lightweight and scalable

environment to handle API requests and application logic. It is responsible for user authentication, role-based access

control, video metadata management, and the orchestration of video publishing through the YouTube Data API v3. Secure

authentication and authorization are implemented using OAuth 2.0, which enables users to safely link their YouTube

accounts and grant permissions for video uploads. The backend interacts with a PostgreSQL database, where all structured

data, including user profiles, video metadata, upload status, and publishing logs, are stored in a relational schema.

The system also includes a YouTube API integration layer that automates the publishing process. When a creator

approves a video, the platform uses the YouTube API to upload the video file, assign the appropriate title, description,

tags, and thumbnail, and schedule it for public release. This process reduces manual effort and ensures consistent metadata

formatting across all videos.

For mobile access, a Kotlin-based Android application is implemented using Trusted Web Activities (TWA).

TWA allows the web app to be launched as a full-screen mobile app with native-like performance. This approach enables

the reuse of the existing web interface, significantly reducing development overhead while maintaining a cohesive

experience across platforms. The Android app supports push notifications, deep links, and secure login sessions through

token-based authentication.

Deployment is handled through Vercel for the frontend, which offers seamless integration with GitHub for continuous

deployment. Backend services are hosted on scalable cloud infrastructure, such as Heroku or Render, depending on the

project’s deployment requirements. Environmental variables and secrets, such as API keys and OAuth credentials, are

securely managed using encrypted environment configuration.

Overall, the technical implementation of YouTuber Layer emphasizes modularity, scalability, and ease of maintenance

while ensuring secure and efficient interaction between team members during the content creation and publishing lifecycle.

Future Scope

As the digital content creation landscape continues to evolve, YouTuber Layer holds significant potential for

expansion and enhancement in several directions. One of the key areas of future development involves integrating

advanced user feedback mechanisms. By allowing creators and editors to rate features, submit suggestions, and

report issues directly within the platform, the development team can continuously adapt the system to user needs. This

feedback loop will enable more agile updates and ensure that the platform evolves in alignment with real-world use

cases.

Another promising direction lies in machine learning and personalization. The platform can incorporate

recommendation models that suggest optimal upload times, trending keywords, or even video titles and tags based on

historical performance and audience engagement metrics. These models can be fine-tuned over time by collecting user

interaction data, such as click-through rates or video engagement statistics, allowing for more intelligent content

planning. Additionally, automated analytics dashboards could be introduced to provide content teams with actionable

insights, such as audience retention trends, growth forecasts, and engagement heatmaps.

The mobile experience can also be further enriched. Although the current implementation using Trusted Web

Activities offers native-like performance, future updates may involve developing fully native Android and iOS apps,

enabling deeper integration with device capabilities such as local file management, camera access for thumbnail or

content creation, and richer notification systems. This would also open the door for offline editing features, allowing

creators to work without internet access and sync changes once connected.

Vol-11 Issue-2 2025 IJARIIE-ISSN(O)-2395-4396

26327 ijariie.com 2757

CONCLUSIONS

YouTuber Layer presents a comprehensive solution aimed at simplifying and streamlining the workflow for

YouTube content creators and their teams. By integrating modern web technologies such as Next.js, Node.js, and

PostgreSQL, along with Android Kotlin through Trusted Web Activities, the platform bridges the gap between editors

and creators, enabling efficient video uploads, metadata management, and direct publishing to YouTube. The system

significantly reduces manual effort, minimizes errors, and enhances collaboration through a clean and intuitive

interface that functions seamlessly across both web and mobile environments.

The technical architecture and user-centric design ensure that creators can focus on content quality rather than

operational complexity. Moreover, the ability to automate publishing and manage roles within a team makes YouTuber

Layer a scalable tool suitable for both individual creators and large content teams. Through continuous refinement,

user feedback collection, and potential enhancements such as recommendation engines, analytics dashboards, and

native mobile apps, the platform is well-positioned for future growth.

REFERENCES & BIBLIOGRAPHY

1. Android Developers Guide – https://developer.android.com/guide

2. PostgreSQL Documentation – https://www.postgresql.org/

3. YouTube Data API v3. (2024). Google Developers. Available at: YouTube API Documentation..

4. W3C. (2024). HTML5 Specification. Available at: W3C HTML5

5. Pressman, R. S. (2014). Software Engineering: A Practitioner's Approach. 9th ed. New York: McGraw-Hill.

6. Android Security Best Practices – https://developer.android.com/topic/security/best-practices

https://developer.android.com/guide
https://www.postgresql.org/

